![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Copenhagen, Denmark (SPX) Nov 21, 2017
Until recently, it was assumed that the ink used for writing was primarily carbon-based at least until the fourth and fifth centuries AD. But in a new University of Copenhagen study, analyses of 2,000-year-old papyri fragments with X-ray microscopy show that black ink used by Egyptian scribes also contained copper - an element previously not identified in ancient ink. In a study published in Scientific Reports, a cross-disciplinary team of researchers show that Egyptians used carbon inks that contained copper, which has not been identified in ancient ink before. Although the analysed papyri fragments were written over a period of 300 years and from different geographical regions, the results did not vary significantly: "The composition of the copper-containing carbon inks showed no significant differences that could be related to time periods or geographical locations, which suggests that the ancient Egyptians used the same technology for ink production throughout Egypt from roughly 200 BC to 100 AD," says Egyptologist and first author of the study Thomas Christiansen from the University of Copenhagen. The papyri fragments were investigated with advanced synchrotron radiation based X-ray microscopy equipment at the European Synchrotron Radiation Facility in Grenoble as part of the cross-disciplinary CoNext project, and the particles found in the inks indicate that they were by-products of the extraction of copper from sulphurous ores.
No unique ink signature "None of the four inks studied here was completely identical, and there can even be variations within a single papyrus fragment, suggesting that the composition of ink produced at the same location could vary a great deal. This makes it impossible to produce maps of ink signatures that otherwise could have been used to date and place papyri fragments of uncertain provenance," explains Thomas Christiansen but adds: "However, as many papyri have been handed down to us as fragments, the observation that ink used on individual manuscripts can differ from other manuscripts from the same source is good news insofar as it might facilitate the identification of fragments belonging to specific manuscripts or sections thereof." According to the researchers, their results will also be useful for conservation purposes as detailed knowledge of the material's composition could help museums and collections make the right decisions regarding conservation and storage of papyri, thus ensuring their preservation and longevity.
Research Report: "The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based X-ray microscopy"
![]() Kobe, Japan (SPX) Nov 16, 2017 Researchers have developed a highly robust gel that includes large amounts of ionic liquid. The research team was led by Professor MATSUYAMA Hideto and Assistant Professor KAMIO Eiji (Kobe University Graduate School of Science, Center for Membrane and Film Technology). These findings were published on November 8 in Advanced Materials. Ionic liquid is a substance made solely from ions, and ... read more Related Links University of Copenhagen - Faculty of Humanities Space Technology News - Applications and Research
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |