|
. | . |
|
by Staff Writers Chicago IL (SPX) Jan 29, 2015
From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming more attractive. Currently, commercial technologies for MWIR detection, such as indium antimonide (InSb) and mercury-cadmium-telluride (MCT), can only operate at cryogenic temperatures in order to reduce thermal and electrical noise. In a search for alternatives, a team of researchers at Northwestern University's Center for Quantum Devices (CQD) has incorporated new materials to develop detectors that can work at room temperature. "A higher operating temperature eliminates the need for liquid nitrogen," said Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science and director of the CQD at Northwestern's McCormick School of Engineering and Applied Science. "That makes detectors more compact, less expensive, and more portable." Depending on its use, infrared radiation is divided into several wavelength segments. MWIR have a radiation range between 3-5 microns; cameras able to see in this wavelength are capable of passive infrared imaging. Razeghi and her group developed an indium arsenide/gallium antimonide (InAs/GaSb) type II superlattice that demonstrated high-resolution MWIR images while operating at high temperatures. The new technique was particularly successful at obtaining infrared images of the human body, which has potential for vascular imaging and disease detection.
Related Links Northwestern University Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |