. | . |
Impact of Arctic amplification on East Asian winter climate by Staff Writers Hong Kong, China (SPX) Sep 21, 2017
An ongoing research project aims to identify and explain teleconnections and future changes in the East Asian Winter Monsoon under Arctic Amplification. The project is led by Dr. Wen Zhou of City University of Hong Kong. Since 1990, a significant winter cooling trend has occurred in the midlatitudes, including western Siberia, where cold air activity in East Asia originates. Simultaneously, a pronounced warming trend has been observed over the polar region accompanying the reduction of Arctic sea ice, which is known as the Arctic amplification. Arctic amplification has thus occurred alongside cold midlatitude winters in recent years, in contrast to cold winters in earlier periods. After the severe and prolonged snowstorms in South China in January 2008, several extreme cold spells hit different parts of the Northern Hemisphere in the seven winters between 2008/09 and 2015/16. "Because the intensity and duration of these cold spells were exceptional in the past few decades, more research should be devoted to understanding the underlying physical mechanisms of cold extremes under a changing climate in order to better predict their occurrence in the future." Zhou explains the motif of the project. "One area of our particular concern is the effect that climate change and the substantial reduction in Arctic sea ice might have on the winter monsoon circulation over East Asia." Zhou says. "How the East Asian winter monsoon will respond to a warmer planet is not totally clear. One possibility is that anomalous blocking events (frequency, location, intensity, duration) due to Arctic amplification and sea-ice loss may enhance extreme cold spells, but the mechanisms potentially involved in such changes are still under discussion." Therefore, Zhou and her colleagues set out to understand and quantify the relationship between the East Asian winter monsoon (EAWM) and blocking in observations and general circulation models, to identify physical and dynamical processes of large-scale teleconnections of the EAWM with blocking based on reanalysis data, and to project the impact of Arctic amplification on the future characteristics of the EAWM based on CMIP5 models. This work was fully supported by the Research Grants Council of Hong Kong, China. In a project report published in Atmospheric and Oceanic Science Letters, Zhou hopes that, "This integral study would be beneficial for policymakers in evaluating the risk of cold extremes in East Asia, and will be of great importance for the socioeconomic development of this densely populated region."
Washington (UPI) Sep 15, 2017 Arctic sea ice shrank to roughly 4.7 million square kilometers in September, making the sea ice extent in 2017 far below numbers from 1979 to 2006. Scientists from the Alfred Wegener Institute, the University of Bremen and Universitat Hamburg reported Friday that the minimum sea ice extent for 2017 is average for the past 10 years, despite being far below average from previous decades. ... read more Related Links Institute of Atmospheric Physics, Chinese Academy of Sciences Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |