. | . |
Ice sheets may be hiding vast reservoirs of powerful greenhouse gas by Staff Writers Oslo, Norway (SPX) Jan 14, 2016
The study indicates that under the frigid weight of Barents Sea Ice sheet, which covered northern Eurasia some 22 000 years ago, significant amounts of methane may have been stored as hydrates in the ground. As the ice sheet retreated, the methane rich hydrates melted, releasing the climate gas into the ocean and atmosphere for millennia. "Creation of gas hydrates requires high pressure; water; gas - mainly methane - and low temperatures. Nowadays we basically consider two environments suitable for this process to occur: subseabed along the world's continental margins, and permafrost areas on land and off shore. " Says principal author of the study, Dr. Alexey Portnov of CAGE - Centre for Arctic Gas Hydrate, Environment and Climate at UiT The Arctic University of Norway.
Ice sheets - a third process "They are heavy, can exert enormous pressure on the ground below. And they are cold, of course. With enough supply of gas and water from below and favorable geological setting you will likely have enormous amounts of gas hydrates contained under modern ice sheets as well".
500-meter thick methane reservoir Scientists from CAGE have over time collected wide-ranging observational data offshore western Svalbard in the Arctic Ocean. This made it possible to create robust models for a scenario of subglacial evolution of gas hydrate reservoirs during and after Last Glacial Maximum, or last ice age in layman's terms. The results of the study indicate that even under conservative estimates of ice thickness a 500-meter thick gas hydrate stability zone existed beneath the ice sheet in the study area. This zone could have served as a methane sink-a reservoir containing immense amounts of the natural greenhouse gas. 1 m3 of gas hydrate contains almost 170 m3 of the greenhouse gas methane.
Rapid melt caused release of methane The scientists have mapped over 1900 pockmarks - gas escape features - on what now is the seafloor in the study area. The age of these pockmarks has in previous studies been estimated as post-glacial, meaning that they appeared after the ice sheet had retreated. "Pockmarks are evidence of gas release from the ground. We infer that the gas hydrate zone was stable as long as the climate was cold and the ice sheet was stable. Abrupt climate warming caused sheets to melt, decreasing the pressure on the ground and increasing the temperature. This destabilized the hydrates. Methane was released into rising seawater and possibly the atmosphere." says Portnov. As the ice sheet retreated, the pressure lifted, steadily widening the corridor for major methane release.
Accelerating climate change Methane, being at least 20 times more potent greenhouse gas than CO2, can accelerate the global warming. If the same process of methane storage is occurring under the current ice sheets, there may be a new threat to take into the account when we are discussing ice sheet retreat in the future. Modern ice sheets will not need thousands of years to melt., The Greenland ice sheet has been losing an estimated 287 billion metric tons per year, states NASA. The continent of Antarctica has been losing about 134 billion metric tons of ice per year since 2002, albeit its ice sheet tells a more complicated story. "It is difficult to study this processes in modern polar environments. The ice sheets of Greenland and Antarctica are several kilometers thick and examining the ground beneath them is challenging and expensive, nonetheless. But the circumstances that were present in formation of gas hydrate zones in the past are also present today. We need to take that into the account when we are considering the impacts that the rapid melt of the modern ice sheets will have on our future climate" says Portnov. This finding was published last week in Nature Communications in the paper "Ice-sheet-driven methane storage and release in the Arctic".
Related Links Center for Arctic Gas Hydrate, Climate and Environment Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |