. | . |
ICESat-2 Laser Fires for 1st Time, Measures Antarctic Height by Kate Ramsayer for GSFC News Greenbelt MD (SPX) Oct 04, 2018
The laser instrument that launched into orbit last month aboard NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) fired for the first time Sept. 30. With each of its 10,000 pulses per second, the instrument is sending 300 trillion green photons of light to the ground and measuring the travel time of the few that return: the method behind ICESat-2's mission to monitor Earth's changing ice. By the morning of Oct. 3, the satellite returned its first height measurements across the Antarctic ice sheet. "We were all waiting with bated breath for the lasers to turn on and to see those first photons return," said Donya Douglas-Bradshaw, the project manager for ICESat-2's sole instrument, called the Advanced Topographic Laser Altimeter System, or ATLAS. "Seeing everything work together in concert is incredibly exciting. There are a lot of moving parts and this is the demonstration that it's all working together." ICESat-2 launched on Sept. 15 to precisely measure heights and how they change over time. It does this by timing how long it takes individual photons to leave the satellite, reflect off the surface, and return to receiver telescope on the satellite. The ATLAS instrument can time photons with a precision of less than a billionth of a second, which allows the mission to detect small changes in the planet's ice sheets, glaciers and sea ice. Once ICESat-2 was in space, the ATLAS team waited to turn on the lasers for about two weeks to allow any Earthly contaminants or gases to dissipate. "It's very critical when you fire the lasers that you don't have contaminants because you could damage the optics," Douglas-Bradshaw said. "Fourteen days is well beyond the time needed for that, but we wanted to be safe." During those two weeks, the ICESat-2 operations team turned on and tested the various systems and subsystems of the spacecraft and instrument, and fired thrusters to start placing the satellite in its final polar orbit, approximately 310 miles (500 kilometers) above Earth. Before the laser was even turned on, however, the team eagerly awaited another milestone, Douglas-Bradshaw said. The door that protected the telescope and detector elements during launch had to be opened. The team had two chances to release one of two spring-loaded pins to open the door. This was successfully accomplished on Sept. 29. The following day, it was the laser's turn. The engineering team had been working with the operations team that controls the instrument on orbit, so the commands were ready to go - first turning on the laser itself, waiting for it to warm up, and then issuing commands to put it in fire mode. The laser energy levels jumped up, and the device that starts ATLAS's sophisticated stopwatch was active - two different, independent indicators that the laser was firing away. "We were all incredibly excited and happy, everyone was taking pictures of the screens showing data plots," Douglas-Bradshaw said. "Someone noted: 'Now we have a mission, now we have an instrument.'" Three days later, the ICESat-2 team had the first segment of height data, taken as the satellite flew over Antarctica. Computer programmers were up all night analyzing the latitude, longitude and elevation represented by each photon that returned to the ATLAS instrument - and by 6 a.m., Tom Neumann, ICESat-2 deputy project scientist, was texting screenshots of the height data to the rest of the team. "It was awesome," Neumann said. "Having it in space, and not just simulating data on the ground, is amazing. This is real light that went from ATLAS to Earth and back again." When scientists analyze the preliminary ICESat-2 data, they examine what is called a "photon cloud," or a plot of each photon that ATLAS detects. Many of the points on a photon cloud are from background photons - natural sunlight reflected off Earth in the exact same wavelength as the laser photons. But with the help of computer programs that analyze the data, scientists can extract the signal from the noise and identify height of the ground below. The first photon cloud generated by ICESat-2 shows a stretch of elevation measurements from East Antarctica, passing close to the South Pole at a latitude of 88 degrees south, then continuing between Thwaites Glacier and Pine Island Glacier in West Antarctica. Next up for ICESat-2 is a suite of procedures to optimize the instrument, Neumann said, including tests to ensure the laser is pointing at the precisely correct angle and lasing at the precisely correct wavelength to allow as many photons as possible to hit the detector. "It will take a couple of additional weeks," he said, "but about one month after launch we'll hopefully start getting back some excellent science-quality data." ICESat-2 launched from Vandenberg Air Force Base on the final United Launch Alliance Delta II rocket. The spacecraft was built by Northrop Grumman, which also controls the observatory from their Mission Operations Center in Dulles, Virginia.
New airborne campaigns to explore snowstorms, river deltas, climate Greenbelt MD (SPX) Sep 26, 2018 Five new NASA Earth science campaigns will take to the field starting in 2020 to investigate a range of pressing research questions, from what drives intense East Coast snowfall events to the impact of small-scale ocean currents on global climate. These studies will explore important, but not-well-understood, aspects of Earth system processes and were competitively selected as part of NASA's Earth Venture-class program. This is NASA's third series of Earth Venture suborbital investigations, which ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |