. 24/7 Space News .
ENERGY TECH
Hundred million degree fluid key to fusion
by Staff Writers
Canberra, Australia (SPX) Mar 08, 2016


Matthew Hole (L) and Zhisong Qu are at the virtual control room for overseas fusion experiments in RSPE. Image courtesy Stuart Hay, ANU. For a larger version of this image please go here.

Scientists developing fusion energy experiments have solved a puzzle of why their million-degree heating beams sometimes fail, and instead destabilise the fusion experiments before energy is generated. The solution used a new theory based on fluid flow and will help scientists in the quest to create gases with temperatures over a hundred million degrees and harness them to create clean, endless, carbon-free energy with nuclear fusion.

"There was a strange wave mode which bounced the heating beams out of the experiment," said Zhisong Qu, from The Australian National University (ANU), lead author of the research paper published in Physical Review Letters.

"This new way of looking at burning plasma physics allowed us to understand this previously impenetrable problem," said Mr Qu, a theoretical physicist in ANU Research School of Physics and Engineering.

Nuclear fusion of hydrogen into helium is the process that powers stars. It promises a large-scale energy source on Earth, based on fuel extracted from water, and does not create the long-term waste that uranium-based nuclear fission does.

The breakthrough is in magnetic confinement fusion, in which hydrogen is heated until it is a plasma 10 times hotter than the centre of the sun, and held in place by strong magnetic fields until fusion reactions occur.

However, plasma this hot is extremely turbulent and can behave in surprising ways that baffle scientists, at times becoming unstable, and dissipating before any fusion reactions can take place.

Mr Qu developed a simpler theory for plasma behaviour based on fluid flow and was able to explain an unstable wave mode that had been observed in the United States' largest fusion experiment, DIII-D.

Collaborator Dr Michael Fitzgerald, from the Culham Centre for Fusion Energy in the UK, said the new method made much more sense than previous brute-force theories that had treated plasma as individual atoms.

"When we looked at the plasma as a fluid we got the same answer, but everything made perfect sense," said Dr Fitzgerald.

"We could start using our intuition again in explaining what we saw, which is very powerful."

Leader of the research group, Associate Professor Matthew Hole, from ANU Research School of Physics and Engineering said the theory's success with the DIII-D wave puzzle was just the beginning.

"It will open the door to understanding a whole lot more about fusion plasmas, and contribute to the development of a long term energy solution for the planet."

Associate Professor Hole said for him the quest for fusion energy went beyond a sustainable planet.

"I'm a bit of a Trekky at heart - the only way you are going to travel to another star system is with a fusion reactor," he said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Australian National University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Understanding how turbulence drains heat from fusion reactors
Princeton NJ (SPX) Feb 24, 2016
The life of a subatomic particle can be hectic. The charged nuclei and electrons that zip around the vacuum vessels of doughnut-shaped fusion machines known as tokamaks are always in motion. But while that motion helps produce the fusion reactions that could power a new class of electricity generator, the turbulence it generates can also limit those reactions. Now, physicists at the U.S. D ... read more


ENERGY TECH
China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

ENERGY TECH
Great tilt gave Mars a new face

Space simulation crew hits halfway mark til August re-entry

Proton-M carrier rocket assembled ahead of Mars Mission

Monster volcano gave Mars extreme makeover: study

ENERGY TECH
Sore, but no taller, astronaut Scott Kelly adjusts to Earth

Test Dummies to Help Assess Crew Safety in Orion

Commercial Crew: Building in Safety from the Ground Up in a Unique Way

Russian company set to usher in era of suborbital tourism

ENERGY TECH
Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

China to Launch Over 100 Long March Rockets Within Five Years

Moving in to Tiangong 2

ENERGY TECH
International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

ENERGY TECH
SpaceX launches SES-9 satellite to GEO; but booster landing fails

US Space Company in Talks With India to Launch Satellite

At last second, SpaceX delays satellite launch again

Arianespace Soyuz to launch 2 Galileo satellites in May

ENERGY TECH
Evidence found for unstable heavy element at solar system formation

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

ENERGY TECH
New radar system set for testing

Scaling up tissue engineering

UMass Amherst team offers new, simpler law of complex wrinkle patterns

How metal clusters grow









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.