![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() By Marlowe HOOD Paris (AFP) Jan 29, 2018
Scientists used a portable device no bigger than a cellphone to sequence the most complete human genome ever assembled with a single technology, according to a study published Monday. The breakthrough, detailed in the journal Nature Biotechnology, brings us closer to the day when family doctors will order up genome scans during a regular check-up along with blood work, the authors suggested. "We are definitely approaching the point where sequencing genomes will become a routine part of advanced clinical exams," lead author Matthew Loose, a professor at the University of Nottingham, told AFP. The new sequencing method is the first to read long, unbroken strands of DNA, yielding a final result that is 99.88 percent accurate. "The process of assembling a genome is like piecing together a jigsaw puzzle," said co-author Nicholas Loman, a scientist at the Institute of Microbiology and Infection and the University of Birmingham. "The ability to produce extremely long sequencing reads is like finding very large pieces of the puzzle." Critically, the so-called nanopore technology sheds light on poorly understood regions of the genome governing the body's immune responses and tumour growth. This may help detect cancer DNA in the blood, and "pick up tumours before they are symptomatic or visible through radiological techniques," said Loman. In the case of a patient with a suspected infection, the sequencing can be used to ferret out the genome of a virus or bacteria, he told AFP. "We could also simultaneously look at how the patient is responding to that infection," he added, noting that each individual's immune system is different. Likewise for sequencing a person's microbiome, the vast community of microbes we each host, mostly in the digestive tract. - Like making a cup of tea - "For personalised medicine, we will want to build up a picture of how individuals may respond to antibiotics and anti-cancer drugs," Loman said. The human genome is composed of more than three billion pairing of building-block molecules, and grouped into some 25,000 genes. It contains the codes and instructions that tell the body how to grow and develop. Flaws in the instructions can lead to disease. The first decoding of a human genome -- completed in 2003 -- was a Manhattan Project-like effort: it took 15 years, cost three billion dollars, and marshalled hundreds of scientists and the computing power from 20 major universities and research institutes. The new sequencing -- carried out by a dozen researchers and half-a-dozen hand-held devices called MinIONs -- cost a few thousand dollars and took three weeks to complete. "In five to ten years, genetic sequencing will be a ubiquitous as boiling a kettle or making a cup of tea," predicted co-author Andrew Beggs, a professor at the University of Birmingham, one of nine institutions involved in the project. The researchers pieced together the genome by passing strands of DNA through minuscule tube-like structures -- manufactured by Oxford Nanopore Technologies -- along with electrically charged atoms. Changes in the electrical current identify DNA molecules, which can then be mapped. Complete sequencing is not to be confused with the gene kits offered by companies such as 23andMe and deCODEme, which only provide DNA snapshots, not the whole shebang. There are only four molecular building blocks of DNA: adenine (A), cytosine (C), guanine (G), and thymine (T). New gene-editing allow for ultra-precise changes and corrections in DNA coding.
![]() Sheffield UK (SPX) Jan 23, 2018 Researchers at the University of Sheffield and Boston's Children Hospital, Harvard Medical School have created a robot that can be implanted into the body to aid the treatment of oesophageal atresia, a rare birth defect that affects a baby's oesophagus. Dr Dana Damian from the Department of Automatic Control and Systems Engineering at the University of Sheffield and her team from Boston Ch ... read more Related Links Space Medicine Technology and Systems
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |