. | . |
How seashells get their strength by Staff Writers Seattle WA (SPX) Jan 12, 2016
Seashells and lobster claws are hard to break, but chalk is soft enough to draw on sidewalks. Though all three are made of calcium carbonate crystals, the hard materials include clumps of soft biological matter that make them much stronger. A study in Nature Communications reveals how soft clumps get into crystals and endow them with remarkable strength. The results show that such clumps become incorporated via chemical interactions with atoms in the crystals, an unexpected mechanism based on previous understanding. By providing insight into the formation of natural minerals that are a composite of both soft and hard components, the work will help scientists develop new materials for a sustainable energy future, based on this principle. "This work helps us to sort out how rather weak crystals can form composite materials with remarkable mechanical properties," said materials scientist Jim De Yoreo of the Department of Energy's Pacific Northwest National Laboratory. "It also provides us with ideas for trapping carbon dioxide in useful materials to deal with the excess greenhouse gases we're putting in the atmosphere, or for incorporating light-responsive nanoparticles into highly ordered crystalline matrices for solar energy applications."
Beautiful and functional Scientists have been exploring how organisms produce these biominerals in the hopes of determining the basic geochemical principles of how they form, and also how to build synthetic materials with unique properties in any desired shape or size. The strength of a material depends on how easy it is to disrupt its underlying crystal matrix. If a material is compressed, then it becomes harder to break the matrix apart. Proteins trapped in calcium carbonate crystals create a compressive force - or strain - within the crystal structure. Unlike the strain that makes muscles sore, this compressive strain is helpful in materials, because it makes it harder to disrupt the underlying crystal structure, thereby adding strength. Scientists understand how forces, stress and strain combine to make strong materials, but they understand less about how to create the materials in the first place.
Pearls of wisdom "The standard view is that the crystal front moves too fast for the inclusions to move out of the way, like a wave washing over a rock," said De Yoreo. That idea's drawback is that it lacks the details needed to explain where the strain within the material comes from. The new results from De Yoreo and colleagues do, however. "We've found a completely different mechanism," he said. To find out how calcium carbonate incorporates proteins or other strength-building components, the team turned to atomic force microscopy, also known as AFM, at the Molecular Foundry, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory. In AFM, the microscope tip delicately runs over the surface of a sample like a needle running over the grooves in a vinyl record. This creates a three-dimensional image of a specimen under the scope. The team used a high concentration of calcium carbonate that naturally forms a crystalline mineral known as calcite. The calcite builds up in layers, creating uneven surfaces during growth, like steps and terraces on a mountainside. Or, imagine a staircase. A terrace is the flat landing at the bottom; the stair steps have vertical edges from which calcite grows out, eventually turning into terraces too. For their inclusions, the team created spheres out of organic molecules and added them to the mix. These spheres called micelles are molecules that roll up like roly-poly bugs based on the chemistry along their bodies - pointing outwards are the parts of their molecules that play well chemically with both the surrounding water and the calcite, while tucked inside are the parts that don't get along with the watery environment.
Better composites through chemistry "The step edge has chemistry that the terrace doesn't," said De Yoreo. "There are these extra dangling bonds that the micelles can interact with." The edges hold onto the micelles as the calcium carbonate steps close around them, one after another. The team watched as the growing steps squeezed the micelles. As the step closed around the top of the micelle, first a cavity formed and then it disappeared altogether under the surface of the growing crystal. To verify that the micelles were in fact buried within the crystals, the team dissolved the crystal and looked again. Like running a movie backwards, the team saw micelles appear as the layers of crystal disappeared. Finally, the team recreated the process in a mathematical simulation. This showed them that the micelles - or any spherical inclusions - are compressed like springs as the steps close around them. These compressed springs then create strain in the crystal lattice between the micelles, leading to enhanced mechanical strength. This strain likely accounts for the added strength seen in seashells, pearls and similar biominerals. "The steps capture the micelles for a chemical reason, not a mechanical one, and the resulting compression of the micelles by the steps then leads to forces that explain where the strength comes from," said De Yoreo. Kang Rae Cho, Yi-Yeoun Kim, Pengcheng Yang, Wei Cai, Haihua Pan, Alexander N. Kulak, Jolene L. Lau, Prashant Kulshreshtha, Steven P. Armes, Fiona C. Meldrum and James J. De Yoreo. Direct observation of mineral-organic composite formation reveals occlusion mechanism, Nature Communications January 6, 2016, doi:10.1038/NCOMMS10187.
Related Links Pacific Northwest National Laboratory Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |