![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Philadelphia PA (SPX) Aug 23, 2016
Car emissions is a high-stakes issue, as last year's Volkswagen scandal demonstrated. Pressure to meet tightening standards led the carmaker to cheat on emissions tests. But wrongdoing aside, how are automakers going to realistically meet future, tougher emissions requirements to reduce their impact on the climate? Researchers report today that a vehicle's cold start - at least in gasoline-powered cars - is the best target for future design changes. The researchers are presenting their work at the 252nd National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 9,000 presentations on a wide range of science topics. "The main goal of our project was to find out how effective regulations of gasoline vehicle emissions have been at reducing the formation of smog," says Greg Drozd, Ph.D. "It was also a very forward-thinking study in anticipation of how cars that meet future emissions standards will lead to reductions in air pollution." Although the Environmental Protection Agency (EPA) has reported that air is cleaner today than it was in the 1970s, more than 130 million people in the U.S. still live in places where smog or particle pollution rises to unhealthful levels. Smog can cause coughing and shortness of breath, and can aggravate asthma or trigger asthma attacks. Much of this haze is formed from volatile organic compounds, or VOCs, and fine particulate matter from tailpipe emissions. To find out what vehicles on the road are currently emitting, Drozd and colleagues at the University of California, Berkeley; Carnegie Mellon University; the University of California, San Diego; and the Massachusetts Institute of Technology rented 25 gasoline-powered cars, including two hybrids, from residents in the Los Angeles area. The vehicle ages ranged from 2 to 20 years. The researchers took the cars to the Haagen-Smit Laboratory funded by the California Air Resources Board and drove them on a giant treadmill. Using a proton-transfer reaction mass spectrometer, they were able to measure a wider range of compounds coming out of tailpipes more rapidly than in previous reports. They detected a cocktail of chemicals, including fuel components such as benzene, toluene and xylenes, and incomplete combustion products including acetaldehyde, formaldehyde and acetonitrile. But overall, their concentrations were very low for the newer cars. "The clearest result was how effective emissions controls have become for organic gases," Drozd says. "New vehicles less than 2 years old emitted as little as 1 percent of the total amount of organic gases that a 20-year-old vehicle emitted. Very few studies have tested new cars for these gases." The researchers also found that almost all emissions in properly functioning, new vehicles came out immediately after starting the cars when their engines were cold. But once new cars warmed up, they had to be driven 100 to 300 miles to match the levels that came out in the first 30 seconds of the engine turning on. "Our work shows that for newer cars we should have fast measurements, so that we can then more accurately predict emissions from cars in the real world," Drozd says. Even malfunctioning and older cars would have to travel 50 to 100 miles, respectively, to release the same amount of emissions as they would within the first minute of a cold start, he adds. This concentrated release very early in a car's operation occurs because its catalytic converter, which breaks down VOCs, hasn't had a chance to warm up yet. The faster it can heat up, the lower the emissions could be, he explains. "That tells us how we need to inform future vehicle engineering," Drozd says. "We need to think a lot about that cold start. That's still the best place to reduce emissions." The researchers' findings could also help the EPA model future emissions standards as the U.S. works to lower them.
Related Links American Chemical Society Car Technology at SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |