![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Hampton VA (SPX) Jul 13, 2016
Once dubbed "the man who could see air," NASA engineer Richard T. Whitcomb used a combination of visualization and intuition to revolutionize modern aviation - by turning the shape of the airplane wing on its head. For decades, Whitcomb had been working on getting aircraft to move faster and more efficiently. By the time he was 34, he had already won the most prestigious honor in aviation, the National Aeronautic Association's 1954 Collier Trophy, for his critical work to overcome the aviation challenge of the day - the sound barrier. Sixteen years later, he was working on improving flight efficiency at speeds just below that barrier. "Most people have to see through testing how air moves on a model," Roy Harris, former aeronautics director at NASA's Langley Research Center, told the Washington Post in Whitcomb's 2009 obituary. "But he had this uncanny ability to accurately sense how air molecules reacted over a surface before he even built the models."
Conquering Drag "As an object moves through air, it collides with the air molecules, creating a disturbance," forming what are essentially sound waves, explains Robert Gregg, chief aerodynamicist for Boeing Commercial Airplanes. "As the object moves faster, approaching the speed of sound, these disturbances that travel at the speed of sound cannot work their way forward and instead coalesce to form a shock wave." That was the sound barrier, which aeronautical engineers figured out how to breach in 1947. However, flying near the speed of sound - around 660 mph at cruising altitudes, depending on air pressure and humidity - remained highly inefficient because of the drag caused by these standing shock waves. Whitcomb set out to conquer the drag. And his bosses at NASA were eager to help him lend his particular brand of genius to the problem. "Though he had a conservative, shy personality, he was a radical in the laboratory," NASA historian James Hansen wrote of Whitcomb in his history of Langley. "In some respects, management did not know exactly how to deal with him. The best idea any of his supervisors came up with was to leave him alone" and take care of any administrative details slowing him down.
Winging It Unlike many engineers, Whitcomb skipped the calculations and went straight to a physical model. He started with a conventional wing design and, relying on intuition, used auto body putty to add bulk to some areas while filing away others, testing and retesting his models in Langley's high-speed wind tunnel. He came up with something he called the "supercritical" airfoil. The end result almost looked upside-down compared with standard wings of the day, because it was nearly flat on top and rounded on the bottom. It was also thicker than the norm, especially on its blunt leading edge. Around the speed of sound, the flatter top minimized the effect of the standing shock wave that formed on the wing, while a downward-curving underside compensated with additional lift. The added thickness also provided a sturdier attachment to the fuselage, allowing for less reinforcing structure and, hence, a lighter wing. Early testing showed the supercritical wing increased a plane's efficiency by as much as 15 percent. And it turned out that the wings were more efficient at subsonic speeds as well. Today, Whitcomb's supercritical wing design is the industry standard, used in commercial, business and military aircraft all over the world. Its increased efficiency has saved the airline industry billions of dollars in fuel every year, which also means significant reductions in greenhouse gas emissions. To learn more about this NASA spinoff, read the original article from Spinoff 2015.
Related Links Aeronautics at NASA Aerospace News at SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |