Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Highly Efficient Broadband Terahertz Radiation from Metamaterials
by Staff Writers
Ames IA (SPX) Feb 03, 2014


A THz spectrometer driven by femtosecond laser pulses was used to demonstrate THz emission from a split-ring resonator metamaterial of single nanometer thickness.

Scientists at the U.S. Department of Energy's Ames Laboratory have demonstrated broadband terahertz (THz) wave generation using metamaterials. The discovery may help develop noninvasive imaging and sensing, and make possible THz-speed information communication, processing and storage. The results appeared in the Jan. 8 issue of Nature Communications.

Terahertz electromagnetic waves occupy a middle ground between electronics waves, like microwave and radio waves, and photonics waves, such as infrared and UV waves. Potentially, THz waves may accelerate telecom technologies and break new ground in understanding the fundamental properties of photonics. Challenges related to efficiently generating and detecting THz waves has primarily limited their use.

Traditional methods seek to either compress oscillating waves from the electronic range or stretch waves from the optical range. But when compressing waves, the THz frequency becomes too high to be generated and detected by conventional electronic devices. So, this approach normally requires either a large-scale electron accelerator facility or highly electrically-biased photoconductive antennas that produce only a narrow range of waves.

To stretch optical waves, most techniques include mixing two laser frequencies inside an inorganic or organic crystal. However, the natural properties of these crystals result in low efficiency.

So, to address these challenges, the Ames Laboratory team looked outside natural materials for a possible solution. They used man-made materials called metamaterials, which exhibit optical and magnetic properties not found in nature.

Costas Soukoulis, an Ames Laboratory physicist and expert in designing metamaterials, along with collaborators at Karlsruhe

A THz spectrometer driven by femtosecond laser pulses was used to demonstrate THz emission from a split-ring resonator metamaterial of single nanometer thickness.

Institute of Technology in Germany, created a metamaterial made up of a special type of meta-atom called split-ring resonators. Split-ring resonators, because of their u-shaped design, display a strong magnetic response to any desired frequency waves in the THz to infrared spectrum.

Ames Laboratory physicist Jigang Wang, who specializes in ultra-fast laser spectroscopy, designed the femto-second laser experiment to demonstrate THz emission from the metamaterial of a single nanometer thickness.

"The combination of ultra-short laser pulses with the unique and unusual properties of the metamaterial generates efficient and broadband THz waves from emitters of significantly reduced thickness," says Wang, who is also an associate professor of Physics and Astronomy at Iowa State University.

The team demonstrated their technique using the wavelength used by telecommunications (1.5 microns), but Wang says that the THz generation can be tailored simply by tuning the size of the meta-atoms in the metamaterial.

"In principle, we can expand this technique to cover the entire THz range," said Soukoulis, who is also a Distinguished Professor of physics and astronomy at Iowa State University.

What's more, the team's metamaterial THz emitter measured only 40 nanometers and performed as well as traditional emitters that are thousands of times thicker.

"Our approach provides a potential solution to bridge the 'THz technology gap' by solving the four key challenges in the THz emitter technology: efficiency; broadband spectrum; compact size; and tunability," said Wang.

Soukoulis, Wang, Liang Luo and Thomas Koschny's work at Ames Laboratory was supported by the U.S. Department of Energy's Office of Science. Wang's work is partially supported by Ames Laboratory's Laboratory Directed Research and Development (LDRD) funding.

.


Related Links
Ames Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
NASA Instrument Determines Hazards of Deep-Space Radiation
Greenbelt MD (SPX) Nov 25, 2013
Deep-space radiation is a significant danger for interplanetary human space flight. But now an instrument on NASA's Lunar Reconnaissance Orbiter (LRO) has learned more than ever before about the high-energy hazards at and around the moon. New findings from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) were published today in the journal Space Weather. "We've never had a de ... read more


TECH SPACE
NASA's LRO Snaps a Picture of NASA's LADEE Spacecraft

Sole camera from NASA moon missions to be auctioned

New results on the geologic characteristics of the Chang'e-3 exploration region

China's moon rover experiences abnormality

TECH SPACE
Curiosity Mars Rover Checking Possible Smoother Route

Work on Mystery Rock Continues As Rover Marks 10

NASA Mars Rover's View of Possible Westward Route

NASA Mars project: radiation risk of highest concern

TECH SPACE
Russian Space Farmers Harvest Wheat, Peas and Greens

Future interplanetary spacecraft to be equipped with 'plantations'

FAA Grants Waypoint 2 Space Safety Approval Of Training Programs

British astronaut says space travel vital to survival of human race

TECH SPACE
Waiting for Yutu

Moon plays trick on Jade Rabbit

'Goodnight, humans': Says Yutu As The Sun Sets

Extra Time for Tiangong

TECH SPACE
NASA Extends Reliance on Russian Spacecraft Until 2018

British firm says its space station cameras to provide Web images

Russia plans three spacewalks from ISS in 2014 - Energia

Space Station 2024 Extension Expands Economic and Research Horizons

TECH SPACE
Both payloads for Arianespace's next Ariane 5 flight are mated to the launcher

45th Space Wing Supports NASA Launch

Athena-Fidus receives its "kick" for Arianespace's upcoming Ariane 5 launch

ILS Proton To Launch Yamal 601

TECH SPACE
NASA-Sponsored 'Disk Detective' Lets Public Search for New Planetary Nurseries

First Weather Map of Brown Dwarf

Astronomers create first map of weather on nearby brown dwarf star

ALMA Discovers a Formation Site of a Giant Planetary System

TECH SPACE
Microwires as mobile phone sensors

New NASA Laser Technology Reveals How Ice Measures Up

Highly Efficient Broadband Terahertz Radiation from Metamaterials

Chameleon of the sea reveals its secrets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement