. 24/7 Space News .
CHIP TECH
High-sensitivity microsensors on the horizon
by Staff Writers
New York NY (SPX) May 15, 2018

Artistic rendering of a parity-time symmetric electronic sensor for telemetry.

Wireless microsensors have enabled new ways to monitor our environment by allowing users to measure spaces previously off limits to research, such as toxic areas, vehicle components, or remote areas in the human body.

Researchers, however, have been stymied by limited improvements in the quality of data and sensitivity of these devices stemming from challenges associated with the environments they operate in and the need for sensors with extremely small footprints.

A new paper published in Nature Electronics by researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York, Wayne State University, and Michigan Technological University, explains how new devices with capabilities far beyond those of conventional sensors can be built by borrowing concepts from quantum mechanics.

The team, led by Andrea Alu, director of the ASRC's Photonics Initiative and Einstein Professor of Physics at The Graduate Center, and Pai-Yen Chen, professor at Wayne State University, developed a new technique for designing microsensors that allows for significantly enhanced sensitivity and a very small footprint.

Their method involves using isospectral parity-time-reciprocal scaling, or PTX symmetry, to design the electronic circuits. A 'reader' is paired with a passive microsensor that meets this PTX symmetry. The pair achieves highly sensitive radio-frequency readings.

"In the push to miniaturize the sensors to improve their resolution and enable large-scale networks of sensing devices, improving the sensitivity of microsensors is crucial," Alu said. "Our approach addresses this need by introducing a generalized symmetry condition that enables high-quality readings in a miniaturized footprint."

The work builds on recent advances in the area of quantum mechanics and optics, which have shown that systems symmetric under space and time inversion, or parity-time (PT) symmetric, may offer advantages for sensor design.

The paper generalizes this property to a wider class of devices that satisfy a more general form of symmetry - PTX-symmetry. This type of symmetry, is particularly well-suited to maintain high sensitivity, while drastically reducing the footprint.

The researchers were able to show this phenomenon in a telemetric sensor system based on a radio-frequency electronic circuit, which exhibited drastically improved resolution and sensitivity compared to conventional sensors.

The microelectromechanical (MEMS)-based wireless pressure sensors share the sensitivity advantages of previous PT-symmetric devices, but crucially the generalized symmetry condition allows both for device miniaturization and enables an efficient realization at low frequencies within a compact electronic circuit.

This new approach may allow researchers to overcome the current challenges in deploying ubiquitous networks of long-lasting, unobtrusive microsensors to monitor large areas. In the age of the internet of things and big data, such networks are useful for wireless health, smart cities, and cyber-physical systems that dynamically gather and store large amounts of information for eventual analysis.

"Development of wireless microsensors with high sensitivity is one of the major challenging issues for practical uses in bioimplants, wearable electronics, internet-of-things, and cyber-physical systems," Chen said.

"While there has been continuous progress in miniature micro-machined sensors, the basics of telemetric readout technique remains essentially unchanged since its invention. This new telemetry approach will make possible the long-sought goal of successfully detecting tiny physical or chemical actuation from contactless microsensors."

Research paper


Related Links
Advanced Science Research Center, GC/CUNY
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Smart microchip can self-start and operate when battery runs out
Singapore (SPX) May 04, 2018
The Internet of Things (IoT), while still in its infancy, is shaping the future of many industries and will also impact our daily lives in significant ways. One of the key challenges of moving IoT devices from concept to reality is to have long-lasting operation under tightly constrained energy sources, thus demanding extreme power efficiency. IoT devices - such as sensors - are often deployed on a massive scale and in places that are usually remote and difficult to service regularly, thus making their ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Tourism nearly a tenth of global CO2 emissions

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

Why plants are so sensitive to gravity: The lowdown

One detector doesn't 'fit all' for smoke in spacecraft

CHIP TECH
SpaceX launches most powerful Falcon 9 yet

SpaceX postpones next-gen rocket launch

Reduce, Reuse, Rockets?

SpaceX's Dragon cargo ship returns to Earth

CHIP TECH
Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission

Mars growth stunted by early giant planetary instability

InSight probe to survey Mars for secrets inside the planet

One scientist's 30-year quest to get under Mars' skin

CHIP TECH
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

CHIP TECH
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

China's communication satellites occupy niche in world market

UK may set up satellite program separate from EU

CHIP TECH
Mining for gold with a computer

Step aside Superman, steel is no competition for this new material

Design for magnetoelectric device may improve your memory

This is not a game: NIST virtual reality aims to win for public safety

CHIP TECH
An Exoplanet Atmosphere Free of Clouds

Helium detected in exoplanet atmosphere for the first time

Hubble detects helium in the atmosphere of an exoplanet for the first time

Researchers simulate conditions inside 'super-Earths'

CHIP TECH
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.