. | . |
Heating ocean moon Enceladus for billions of years by Staff Writers Paris (ESA) Nov 08, 2017
Enough heat to power hydrothermal activity inside Saturn's ocean moon Enceladus for billions of years could be generated through tidal friction if the moon has a highly porous core, a new study finds, working in favour of the moon as a potentially habitable world. A paper published in Nature Astronomy presents the first concept that explains the key characteristics of 500 km-diameter Enceladus as observed by the international Cassini spacecraft over the course of its mission, which concluded in September. This includes a global salty ocean below an ice shell with an average thickness of 20-25 km, thinning to just 1-5 km over the south polar region. There, jets of water vapour and icy grains are launched through fissures in the ice. The composition of the ejected material measured by Cassini included salts and silica dust, suggesting they form through hot water - at least 90+ C - interacting with rock in the porous core. These observations require a huge source of heat, about 100 times more than is expected to be generated by the natural decay of radioactive elements in rocks in its core, as well as a means of focusing activity at the south pole. The tidal effect from Saturn is thought to be at the origin of the eruptions deforming the icy shell by push-pull motions as the moon follows an elliptical path around the giant planet. But the energy produced by tidal friction in the ice, by itself, would be too weak to counterbalance the heat loss seen from the ocean - the globe would freeze within 30 million years. As Cassini has shown, the moon is clearly still extremely active, suggesting something else is happening. "Where Enceladus gets the sustained power to remain active has always been a bit of mystery, but we've now considered in greater detail how the structure and composition of the moon's rocky core could play a key role in generating the necessary energy," says lead author Gael Choblet from the University of Nantes in France. In the new simulations the core is made of unconsolidated, easily deformable, porous rock that water can easily permeate. As such, cool liquid water from the ocean can seep into the core and gradually heat up through tidal friction between sliding rock fragments, as it gets deeper. Water circulates in the core and then rises because it is hotter than the surroundings. This process ultimately transfers heat to the base of the ocean in narrow plumes where it interacts strongly with the rocks. At the seafloor, these plumes vent into the cooler ocean. One seafloor hotspot alone is predicted to release as much as 5 GW of energy, roughly corresponding to the annual geothermal power consumed in Iceland. Such seafloor hotspots generate ocean plumes rising at a few centimetres per second. Not only do the plumes result in strong melting of the ice crust above, but they can also carry small particles from the seafloor, over weeks to months, which are then released into space by the icy jets. Moreover, the authors' computer models show that most water should be expelled from the moon's polar regions, with a runaway process leading to hot spots in localised areas, and thus a thinner ice shell directly above, consistent with what was inferred from Cassini. "Our simulations can simultaneously explain the existence of an ocean at a global scale due to large-scale heat transport between the deep interior and the ice shell, and the concentration of activity in a relatively narrow region around the south pole, thus explaining the main features observed by Cassini," says co-author Gabriel Tobie, also from the University of Nantes. The scientists say that the efficient rock-water interactions in a porous core massaged by tidal friction could generate up to 30 GW of heat over tens of millions to billions of years. "Future missions capable of analysing the organic molecules in the Enceladus plume with a higher accuracy than Cassini would be able to tell us if sustained hydrothermal conditions could have allowed life to emerge," says Nicolas Altobelli, ESA's Cassini project scientist. A future mission equipped with ice-penetrating radar would also be able to constrain the ice thickness, and additional flybys - or an orbiting craft - would improve models of the interior, further verifying the presence of active hydrothermal plumes. "We'll be flying next-generation instruments, including ground-penetrating radar, to Jupiter's ocean moons in the next decade with ESA's Juice mission, which is specifically tasked with trying to understand the potential habitability of ocean worlds in the outer Solar System," adds Nicolas.
Research Report: "Powering prolonged hydrothermal activity inside Enceladus," ?by G. Choblet et al. is published in Nature Astronomy, 6 November 2017.
Pasadena CA (JPL) Nov 07, 2017 Heat from friction could power hydrothermal activity on Saturn's moon Enceladus for billions of years if the moon has a highly porous core, according to a new modeling study by European and U.S. researchers working on NASA's Cassini mission. The study, published in the journal Nature Astronomy, helps resolve a question scientists have grappled with for a decade:Where does the energy to pow ... read more Related Links Cassini-Huygens Explore The Ring World of Saturn and her moons Jupiter and its Moons The million outer planets of a star called Sol News Flash at Mercury
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |