Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
HAWC Observatory to Study Universe's Most Energetic Phenomena
by Staff Writers
College Park MD (SPX) Mar 24, 2015


This view of the HAWC observatory was taken from the slopes of VolcAin Sierra Negra. Its neighbor, Pico de Orizaba, is the highest peak in Mexico and is visible in the background. Image courtesy HAWC Collaboration.

Supernovae, neutron star collisions and active galactic nuclei are among the most energetic phenomena in the known universe. These violent explosions produce high-energy gamma rays and cosmic rays, which can easily travel large distances-making it possible to see objects and events far outside our own galaxy.

The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, located 13,500 feet above sea level on the slopes of Mexico's Volcan Sierra Negra, is the newest tool available to visualize these explosive events and learn more about the nature of high-energy radiation. Construction is now complete on HAWC's 300th and final detector tank, and the observatory will soon begin collecting data at full capacity. This milestone will be marked with an inaugural event at the observatory on March 19-20, 2015.

"HAWC truly is the only observatory of its kind, and will give us a clearer picture than ever before of the high-energy wonders of the universe," said Jordan Goodman, professor of physics at the University of Maryland. The project is a joint collaboration between the United States and Mexico, and Goodman leads a team of UMD physicists that has managed construction of the observatory since 2011.

Goodman will continue in his role as the U.S. lead investigator and spokesperson for the HAWC collaboration. His Mexican counterpart is Alberto Carraminana, director of the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE).

Each of HAWC's detectors is a huge tank containing 50,000 gallons of ultrapure water with four light sensors anchored to the floor. When gamma rays or cosmic rays reach Earth's atmosphere they set off a cascade of charged particles, and when these particles reach the water in HAWC's detectors, they produce a cone-shaped flash of light known as Cherenkov radiation.

The effect is much like a sonic boom produced by a supersonic jet, because the particles are traveling slightly faster than the speed of light when they enter the detectors.

The light sensors record each flash of Cherenkov radiation inside the detector tanks. By comparing nanosecond differences in arrival times at each light sensor, scientists can reconstruct the angle of travel for each particle cascade.

The intensity of the light indicates the primary particle's energy, and the pattern of detector hits can distinguish between gamma rays and cosmic rays. With 300 detectors spread over an area equivalent to more than three football fields, HAWC is able to "see" these events in relatively high resolution.

To envision how the detectors work, Goodman suggests imagining your computer keyboard as a detector array, with each key representing one tank. Now, approach the keyboard with an open hand at an angle. This represents the cascade of charged particles. The heel of your hand will strike a few keys first, followed by more keys in a defined order as you flatten your palm across the keyboard.

"Someone else would be able to determine exactly where your hand came from based solely on the order of key presses," Goodman explained. "HAWC works the same way, with multiple detectors arrayed over a defined space."

HAWC has been collecting data since August 2013 when it had only 111 detector tanks. Even then, HAWC was much more capable than its predecessor-an observatory known as Milagro that operated near Los Alamos, N.M. and ceased taking data in 2008. In eight years of operation, Milagro found new sources of high-energy gamma rays, detected diffuse gamma rays from our own Milky Way galaxy and discovered that the cosmic rays hitting earth had an unexpected non-uniformity.

The completed HAWC observatory will be 10 times more sensitive than Milagro, and each new HAWC detector has added to the observatory's capabilities and spatial resolution. In the past year and half, HAWC has gathered high-energy images of objects near and far, including the Crab Nebula, star clusters in the Milky Way and the active galactic nucleus Markarian 421.

From its perch atop the highest accessible peak in Mexico, HAWC will have 15 percent of the sky within its sights at any given time. As the earth rotates, so too will HAWC's field of vision, meaning that HAWC will see up to two-thirds of the sky every 24 hours.

The team's major science goals include studying active galactic nuclei-the bright outputs of energy associated with the growth of supermassive black holes at the center of some galaxies-as well as tracking gamma ray bursts and other large explosions. The researchers will also work to determine the enigmatic nature of cosmic rays themselves.

In addition to Goodman, other UMD physics collaborators are associate research scientist Andrew J. Smith, postdoctoral researchers Colas Riviere and Brian Baughman, and graduate student Joshua Wood.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Time-lapse snapshots of a nova's fading light
Tokyo, Japan (SPX) Mar 23, 2015
Scientists in a collaboration led by Dai Takei of the RIKEN SPring-8 Center in Japan have, for the first time, examined a detailed 'time lapse' X-ray image of the expansion of a classical nova explosion using the GK Persei nova - a binary star system which underwent a nova explosion in 1901. Through this work, they hope to gain a better understanding of the expansion of gases in the univer ... read more


STELLAR CHEMISTRY
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

STELLAR CHEMISTRY
Mars has nitrogen, key to life: NASA

India's frugal Mars mission extended by six months

Mars One's CEO Bas Lansdorp answers questions about mission feasibility

Could Water Have Carved Channels On Mars Half A Million Years Ago?

STELLAR CHEMISTRY
50 years ago today, space welcomed its first sandwich

Small Staff has Big Impact Showing How NASA Can Engage Students

TED Prize winner wishes for archive of human wisdom

The Science Of The Start-Up

STELLAR CHEMISTRY
China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

STELLAR CHEMISTRY
One-Year Crew Set for Launch to Space Station

Russia, US May Sign New Deal to Send Astronauts to ISS

Lockheed Martin reveals new method for resupplying space station

Testing astronauts' lungs in Space Station airlock

STELLAR CHEMISTRY
Kosmotras Denies Reports of Suspending Russian-Ukrainian Launches

Arianespace selected by Airbus to launch EDRS-C Satellite

US to Scrap Delta IV Launch Vehicle in Favor of Russian-Made Rocket

Proton launches Express AM-7 satellite for Russian Government

STELLAR CHEMISTRY
SOFIA Finds Missing Link Between Supernovae and Planet Formation

Our Solar System May Have Once Harbored Super-Earths

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

Some habitable exoplanets could experience wildly unpredictable climates

STELLAR CHEMISTRY
Want to snag a satellite? Try a net

Slight surface movements on the radar

Spacecraft Power Systems

Processing Paradigms That Accelerate Computer Simulations




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.