. | . |
Groundbreaking nanosatellite imaging technology will revolutionize how we manage climate change by Staff Writers Espoo, Finland (SPX) Dec 21, 2018
A pioneering Finnish nanosatellite has now reached space equipped with the world's smallest infrared hyperspectral camera. The photos with infrared data taken from the satellite provide new solutions for monitoring and managing the effects of climate change. The hyperspectral camera is a trailblazing innovation from VTT Technical Research Centre of Finland. The Reaktor Hello World nanosatellite was launched into space on 29 November by the Finnish space technology startup Reaktor Space Lab. In the past, hyperspectral imaging - the simultaneous collection of the optical spectrum at each point in an image - was feasible only with larger, exorbitantly priced satellites. The larger satellites also came with significant restrictions: a single satellite provides new data only when passing over a specific location and produces new imagery on several-day intervals. New tiny nanosatellites, such as the Reaktor Hello World satellite, weighing only a couple of kilograms are relatively cheap and fast to build. In groups, nanosatellites can form cost-efficient constellations. With the help of the new Finnish imaging technology, nanosatellites are now able to collect critical, nearly real-time data on the state of our planet. That development has far-reaching benefits for monitoring climate change. The groundbreaking innovation comes at a pivotal time as climate change continues apace. "This particular type of imaging data makes it possible to monitor the status of carbon sink resources. It also enables optimization of food production and reducing environmental load caused by agriculture, providing a way to sense water irrigation needs and optimize the use of fertilizers in fields," says Anna Rissanen, Research Team Leader at VTT.
Unique hyperspectral data can help predict natural disasters such as forest fires Such features could be related to the presence of chemicals like fertilizers, biomass content or rock species, for example. Hyperspectral imagers can also monitor vegetation health and the composition of greenhouse gases. "This new technology will allow us to react to global environmental changes in near real time. That opens up many new business opportunities as well as ways to combat climate change," says Tuomas Tikka, CEO of Reaktor Space Lab, Reaktor's portfolio company that specializes in building advanced nanosatellites for space-based services. The first images were taken on 2nd of December over the Sahara desert and they were downloaded from the Reaktor Hello World during the first weeks of December. "The image above Sahara (Figure 1) shows how the water content of an area can be determined and mapped based on infrared spectral image data," explains Antti Nasila, Senior Scientist at VTT and the leading technical expert for the camera development of the Reaktor Hello World nanosatellite mission. "This type of information could prove crucial for areas fighting drought or forest fires, both of which are becoming more common with the changing climate. In the future, nanosatellite constellations could provide, for instance, concurring updates about the severity of the droughts in each neighborhood in California", says Nasila.
The hyperspectral imager and nanosatellite technology in detail The world's first nanosatellite compatible hyperspectral imager built by VTT was launched on board the Aalto-1 satellite in June 2017, demonstrating hyperspectral imaging for visible and VNIR range (500 - 900 nm). Now, the technology has successfully been extended to cover also the infrared range. In the future, the team believes that this hyperspectral imaging technology can bring completely new solutions for space exploration.
NASA Sends CubeSats to Space on First Dedicated Launch with US Partner Rocket Lab Mahia Peninsula, New Zealand (SPX) Dec 16, 2018 A series of new CubeSats now are in space, conducting a variety of scientific investigations and technology demonstrations, following launch Sunday of Rocket Lab's first mission for NASA under a Venture Class Launch Services (VCLS) contract. An Electron rocket lifted off at 1:33 a.m. EST (7:33 p.m. NZDT) from the company's launch complex on the Mahia Peninsula in New Zealand, marking the first time CubeSats have launched for NASA on a rocket designed specifically for small payloads. "With th ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |