. | . |
Great Barrier Reef reveals rapid changes of ancient glaciers by Staff Writers Tokyo, Japan (SPX) Jul 30, 2018
Graphs of global sea levels around the time of the poorly understood Last Glacial Maximum (27,000 to 20,000 years ago) previously showed stable ice sheets for about 10,000 years before the ice slowly started to melt. New analysis of the first Great Barrier Reef samples covering the time 22,000 years ago to 19,000 years ago finally adds detail to that period, providing valuable insights for models of climate and ice sheet dynamics. The research team, led by Professor Yusuke Yokoyama of the University of Tokyo, now divides the Last Glacial Maximum into two distinct periods: + period A - 30,000 to 21,500 years ago, the sea level was relatively stable + period B - 21,000 to 17,000 years ago, the sea level was unstable with large, rapid fluctuations The rapid drop in sea level observed 21,000 years ago is particularly striking because it contradicts current understanding of this period. "This challenges the paradigm that glacier size can only change slowly, because rapid sea level changes mean water must melt or freeze rapidly," said Yokoyama, lead author of the research paper published in Nature on 26 July 2018. These rapid shifts in the size of ancient glaciers are significant in the context of modern climate change and its associated impacts. "Current models of glacier dynamics may be too conservative. The possibility of rapid increases or decreases in sea level should be considered," said Yokoyama. Future climate prediction models are tested by their ability to accurately calculate historic climate parameters that are verified by sample data. All accurate, detailed data about ancient climates are additional points to check the accuracy of climate models. "Research teams like ours collect data about how the Earth used to be, and then other research groups use those data to continuously improve their models of the future climate," said Yokoyama. "It's really important to understand the size and location of ice sheets because large bodies of ice act like a freezer for the local environment - glaciers change ocean temperature and salinity, which affect ocean conditions. Understanding ancient sea levels can reveal geological structures, such as land bridges, that could have been important for migration routes or species separation," said Yokoyama.
Collecting From The Reef Collecting fossil corals from the Last Glacial Maximum is technically and logistically challenging. "We sampled coral from 90 meters to 130 meters (98 to 142 yards) below the current sea level. It's difficult to collect data anywhere between 50 and 200 meters (55 and 219 yards) underwater; divers usually can't go below 30 meters (33 yards) and ship captains prefer to not go shallower than 200 meters," said Yokoyama. The Great Barrier Reef was selected as the coral core sample site because it can reveal a uniquely clear picture of past glacier ice sheet behavior. The reef's tropical position near the equator means it was and remains far from the immediate influence of glacier ice sheets, so sea level changes local to the Great Barrier Reef reflect global changes. Additionally, the Australian tectonic plate has minimal seismic activity, so earthquakes did not change the position of the reef. The gentle sloping structure of the ancient Great Barrier Reef also meant researchers could physically collect the samples they need. "Sites close to the former ice sheets cannot provide accurate sea level histories because over time they are overwritten by large deformations of the Earth," said Yokoyama.
Studying Reef Samples "Two death events of reefs are very clear in the coral cores we examined," said Yokoyama. When the ice sheets grew, the global sea level fell so the coral dried out and died, but coral in deeper waters survived. If the water becomes too deep, sunlight and nutrients become unavailable and the reef can drown. These two death events are consistent with a drop in sea level and a subsequent rise. The ages of the two death events suggest that both happened over only 4,000 years, which researchers remark is particularly abrupt. Webster led the team of reef scientists from Spain, Japan, and the U.S. responsible for interpreting ecological data used to track reef habitat depth, and therefore relative sea level, over time. That information was then combined with radiometric data and used by Yokoyama and his team to model fluctuations in the vertical position of the seafloor caused by changes in water or ice volume. The combined results clarified ice sheet dynamics during the poorly understood Last Glacial Maximum period. "Fossil coral reefs were very sensitive to environmental changes, so by examining the biological assemblages in the cores we were able to reconstruct how ancient water depths changed through time," said Webster. Yusuke Yokoyama's website
Research shows how the Little Ice Age affected South American climate Sao Paulo, Brazil (SPX) Jul 30, 2018 A new study published in Geophysical Research Journal shows that the so-called Little Ice Age - a period stretching from 1500 to 1850 in which mean temperatures in the northern hemisphere were considerably lower than at present - exerted effects on the climate of South America. Based on an analysis of speleothems (cave formations) in the Brazilian states of Mato Grosso do Sul and Goias, the study revealed that in the seventeenth and eighteenth centuries, the climate of southwestern Brazil was wett ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |