Subscribe free to our newsletters via your
. 24/7 Space News .




PHYSICS NEWS
Gravitational waves that are 'sounds of universe'
by Staff Writers
Jerusalem, Israel (SPX) Oct 04, 2011


A simulation of matter ejected from a star mergers.

Einstein wrote about them, and we're still looking for them - gravitational waves, which are small ripples in the fabric of space-time, that many consider to be the sounds of our universe.

Just as sound complements vision in our daily life, gravitational waves will complement our view of the universe taken by standard telescopes.

Albert Einstein predicted gravitational waves in 1918. Today, almost 100 years later, advanced gravitational wave detectors are being constructed in the US, Europe, Japan and Australia to search for them. While any motion produces gravitational waves, a signal loud enough to be detected requires the motion of huge masses at extreme velocities.

The prime candidate sources are mergers of two neutron stars: two bodies, each with a mass comparable to the mass of our sun, spiraling around each other and merging at a velocity close to the speed of light.

Such events are rare, and take place once per hundreds of thousands of years per galaxy. Hence, to detect a signal within our lifetime the detectors must be sensitive enough to detect signals out to distances of a billion light years away from Earth. This poses an immense technological challenge. At such distances, the gravitational waves signal would sound like a faint knock on our door when a TV set is turned on and a phone rings at the same time.

Competing noise sources are numerous, ranging from seismic noise produce by tiny quakes or even a distant ocean wave. How can we know that we have detected a gravitational wave from space rather than a falling tree or a rambling truck?

Therefore, astronomers have been looking for years for a potential electromagnetic light signal that would accompany or follow the gravitational waves. This signal would allow us to "look through the peephole" after hearing the faint knock on the door, and verify that indeed "someone" is there.

In their new article just published in Nature, Prof. Tsvi Piran, Schwarzmann University Professor at the Hebrew University of Jerusalem, and Dr. Ehud Nakar from Tel Aviv University describe having found just that.

They noticed that surrounding interstellar material would slow debris ejected at velocities close to the speed of light during the merger two neutron stars. Heat generated during this process would be radiated away as radio waves. The resulting strong radio flare would last a few months and would be detectable with current radio telescopes from a billion light years away.

Search after such a radio signal would certainly take place following a future detection, or even a tentative detection of gravitational waves. However, even before the advanced gravitational wave detectors become operational, as expected in 2015, radio astronomers are geared to looking for these unique flares.

Nakar and Piran point out in their article that an unidentified radio transient observed in 1987 by Bower et al., has all the characteristics of such a radio flare and may in fact have been the first direct detection of a neutron star binary merger in this way.

Dr. Nakar's research was supported by an International Reintegration Grant from the European Union and a grant from the Israeli Science Foundation and an Alon Fellowship. Prof. Piran's research was supported by an Advanced European Research Council grant and by the High Energy Astrophysics Center of the Israeli Science Foundation.

.


Related Links
The Hebrew University of Jerusalem
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








PHYSICS NEWS
Microgravity Science Glovebox Team Celebrates 10,000 Hours of Glovebox Operation
Greenbelt MD (SPX) Oct 04, 2011
The Microgravity Science Glovebox team has reason to celebrate. On Sept. 13 at 7:45 p.m. CDT, the science facility hit 10,000 hours of operation, orbiting high above us on board the International Space Station. The glovebox, also known as MSG, launched to the station during Expedition 5 on June 5, 2002, on space shuttle Endeavour. It is located in the U.S. laboratory, and allows crew membe ... read more


PHYSICS NEWS
NASA Partners Uncover New Hypothesis On Crater Debris

China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

PHYSICS NEWS
Mars Express finds water supersaturation in the Martian atmosphere

SpaceX says 'reusable rocket' could help colonize Mars

Help NASA Find Life On Mars With MAPPER

Drilling into Arctic Ice

PHYSICS NEWS
NASA Selects Science Investigations For Concept Studies

NASA's new plan for massive rocket greeted with enthusiasm, criticism

Novel design approach offers vehicle for space innovation

Asia's biggest tech fair opens in Japan

PHYSICS NEWS
Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

Tiangong-1 Forms Cornerstone Of China's Space Odyssey

"Heavenly Palace" China's dream home in space

PHYSICS NEWS
DLR ROKVISS robotic arm returns from space

Commercial space deliveries 'within months': NASA

Private US capsule not to dock with ISS

Crew safely returns to Earth after crash

PHYSICS NEWS
Russia's Soyuz-2.1B carrier rocket orbits Glonass satellite

Sea Launch resumes operations after 2-year break

Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

PHYSICS NEWS
Heavy Metal Stars Produce Earth-Like Planets

Doubts Over Fomalhaut b

Earth's Trapped Gas Fed the Early Atmosphere

From the Comfort of Home, Web Users May Have Found New Planets

PHYSICS NEWS
India to launch $45 tablet computer

Research leads to enhanced kit to improve design and processing of plastics

When Water Becomes Glass

Apple chief Cook to debut hot new iPhone




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement