|
. | . |
|
by Staff Writers Zurich, Switzerland (SPX) Jan 15, 2015
For some time now, energy experts have been adamant that we will need much more clean energy in the future if we are to replace fossil fuel sources and reduce CO2 emissions. For example, electric cars will need to replace the petrol-powered cars driving on our roads. Yet in order for electric cars to travel greater distances or mobile phones to stay charged for longer, we will need better batteries and more of them. In the transition to renewable energy sources, accumulators also play a key role in storing excess power from wind turbines or solar power plants and compensating for fluctuations in the energy supply. In this regard, researchers are diligently looking for new materials that exhibit a greater energy density and charging capacity, but which are no heavier or larger than those used in today's lithium-ion batteries. Today's batteries provide a reliable power supply for our smartphones, electric cars and laptops, but are unable to keep up with the growing demands placed on them. Dr Semih Afyon, a scientist at the Electrochemical Materials Institute, sums up the fundamental idea that is driving battery research: "What we need is new chemistry and novel compounds to obtain safe, better and longer-lasting batteries."
Glass particles instead of crystals The material is made of vanadium oxide (V2O5) and lithium-borate (LiBO2) precursors, and was coated with reduced graphite oxide (RGO) to enhance the electrode properties of the material. The researchers used a vanadium-based compound because vanadium is a transition metal with various oxidation states, which can be exploited to reach higher capacities. In crystalline form, vanadium pentoxide can take three positively charged lithium ions - three times more than materials presently used in cathodes, such as lithium iron phosphate. However, crystalline vanadium pentoxide cannot release all of the inserted Li-ions and only allows a few stable charge/discharge cycles. This is because once the lithium ions penetrate the crystalline lattice during the loading process, the lattice expands. As a result, an electrode particle swells as a whole, i.e. it increases in volume only to shrink again once the charges leave the particle. This process may lead to instabilities in the electrode material in terms of structural changes and contact losses. Researchers therefore had to find a way to retain the structure of the initial material while maximizing the capacity and also maintaining its ability to "take" the charges, which is how they devised the idea of using vanadium as a glass rather than in its crystalline form. In glass, a so-called "amorphous" material, atoms do not arrange themselves in a regular lattice as they do when they are in a crystalline state. Instead, the atoms exist in a state of wild disarray.
Inexpensive and simple production The materials scientists melted the powder at 900 C and cooled the melt as quickly as possible to form glass. The resulting paper-thin sheets were then crushed into a powder before use, as this increases their surface area and creates pore space. "One major advantage of vanadate-borate glass is that it is simple and inexpensive to manufacture", states Afyon. This is expected to increase the chance of finding an industrial application. To produce an efficient electrode, the researcher coated the vanadate-borate powder with reduced graphite oxide (RGO). This increases conductivity while at the same time protecting the electrode particles. However, it does not impede electrons and lithium ions as they are transported through the electrodes. Afyon used this vanadate-borate glass powder for the battery cathodes, which he then placed in prototypes for coin cell batteries to undergo numerous charge/discharge cycles.
As much as twice the power One battery with an RGO-coated vanadate-borate glass electrode exhibited an energy density of around 1000 watt-hours per kilogram. It achieved a discharge capacity that far exceeded 300 mAh/g. Initially, this figure even reached 400 mAh/g, but dropped over the course of the charge/discharge cycles. "This would be enough energy to power a mobile phone between 1.5 and two times longer than today's lithium-ion batteries", Afyon estimates. This may also increase the range of electric cars by one and a half times the standard amount. These figures are still theoretical. Patent and further development The researchers have already applied for a patent for their new material. They also worked with industry partners on the development. "Our focus was on practical applications, as well as on fundamental research", says the researcher. A new concept usually takes around 10 to 20 years to gain a foothold in the market. The researcher's positive results with the vanadate-borate glass have encouraged them to continue their research in this area. Afyon currently works as a project leader in a research consortium led by Jennifer Rupp, professor of electrochemical materials, focused on developing an innovative solid-state battery. They are already using and testing the vanadate-borate electrode in this system, and their next step is to optimise the system. In particular, they have to increase the number of charge/discharge cycles significantly, which could be achieved by improving battery and electrode designs as well as by using coatings other than reduced graphite oxide.
Related Links ETH Zurich Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |