Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Giant piezoelectricity from ZnO materials, comparable with perovskite, was achieved
by Staff Writers
Beijing, China (SPX) Apr 05, 2012


This is a representative D-V curve and the piezoresponse hysteresis loop of Zn0.975V0.025O ?lms. Credit: Science China Press

In recent years, with the growing concerns over environmental protection and human health, environment-friendly materials have received increasing attention, and for decades researchers have been fiercely studying lead-free piezoelectric materials with high piezoelectric properties.

After more than 7-years of innovative research, Professor PAN Feng and his group from Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, presented a new type of environment-friendly piezoelectric material with giant piezoresponse and simple structure, small-ion-doped ZnO. They also provided a general rule describing the impact of doping on the piezoresponse of ZnO films.

Specifically, if doped ions substitute at Zn2+ sites, doping ZnO with small/big ions can enhance/reduce the piezoresponse. This rule is a useful guide in fabricating enhanced piezoresponse in wurtzite materials and offers a new paradigm to seek environment-friendly piezoelectric materials with high piezoelectric properties.

Their work, titled "Giant piezoresponse and promising application of environmental friendly small-ion-doped ZnO", was published in SCIENCE CHINA Technological Sciences.2012, Vol 55(2).

Piezoelectric materials are key materials for the fabrication of various transducers, pressure sensors and actuators, piezoelectric oscillator and actuators, transformer, surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices, which are widely used in the fields of information, energy, machinery, electronics, national defense, among others.

Because of their excellent piezoelectric property, lead (Pb)-based piezoelectric materials is one of the most widely exploited and extensively used piezoelectric materials. However, Pb is highly toxic and its toxicity can be further enhanced due to its easy volatilization during processing. Thus, processing and use of Pb-based piezoelectric materials can contaminate environments and damage human health, thereby limiting their applications.

With the rise in environmental awareness, lead-free piezoelectric materials have received greater attention, the prevailing trend being that environment-friendly lead-free piezoelectric materials will replace Pb-based piezoelectric materials.

As a piezoelectric material, ZnO has various advantages. Firstly, it has the strongest piezoelectric response among the tetrahedrally-bonded semiconductors. Secondly, it is structurally simple and easy to fabricate.

Moreover, ZnO films are compatible with semiconductor processes, and therefore has been widely used as sensors and actuators in micro-electromechanical systems and as SAW and BAW devices in the field of communications. However, performance improvements in piezoelectric devices demand significant piezoelectric behavior and stronger piezoresponse; in that regard d33 is the important parameter for evaluating piezoelectric property in ZnO.

See the article: Pan F, Luo J T, Yang Y C, et al. Giant piezoresponse and promising application of environmental friendly small-ion-doped ZnO. SCI CHINA Tech Sci, 2012, 55(2):1.

.


Related Links
Science in China Press
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Quantum information motion control is now improved
Heidelberg, Germany (SPX) Apr 04, 2012
Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in EPJ B. This study, led by scientists from Zhejiang University, Hangzhou, China, and the Centre for Computational Science and Engineering at the National University of Singapore, could have implications for q ... read more


CHIP TECH
Earth's Other Moons

Flying Formation - Around the Moon at 3,600 MPH

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

CHIP TECH
Mars missions race, India takes lead

12-Mile-High Martian Dust Devil Caught In Act

The sounds of Mars and Venus are revealed for the first time

Dusty, Acidic Glaciers Could Explain Layered Deposits on Mars

CHIP TECH
'Smart City' ambitions for quake-struck Italian town

Boeing Completes Parachute Drop Test of Crew Space Transportation Spacecraft

New Study Calls For Recognition of Private Property Claims in Space

Conservatives' trust in science has fallen dramatically since mid-1970s

CHIP TECH
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

CHIP TECH
Busy first days for ATV Edoardo Amaldi

Space Savings for ISS Science Samples

Europe's ATV-3 Space Freighter Adjusts ISS Orbit

Aerojet Propulsion Helps Deliver Astronaut Care Packages

CHIP TECH
Spy satellite-carrying rocket blasts off

Orbital Receives Order for Minotaur I Space Launch Vehicle From USAF

Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

CHIP TECH
NASA's Kepler Mission Awarded Mission Extension

A planetary system from the early Universe

Discovery of an 'alien earth' imminent?

Getting to Know the Goldilocks Planet

CHIP TECH
Court revives Viacom copyright suit against YouTube

Google gives glimpse of Internet glasses

Handover of Japan-built Radar to NASA

New understanding of how materials change when rapidly heated




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement