. | . |
Geophysics could slow Antarctic ice retreat by Staff Writers Montreal, Canada (SPX) Nov 17, 2015
The anticipated melting of the massive West Antarctic Ice Sheet could be slowed by two big factors that are largely overlooked in current computer models, according to a new study. The findings, published online in Nature Communications, suggest that the impact on global sea levels from the retreating ice sheet could be less drastic - or at least more gradual - than recent computer simulations have indicated. Over the past year, numerous studies have warned that parts of the West Antarctic Ice Sheet are on the verge of a runaway retreat. Just last week a high-profile research paper forecast that this could lead eventually to a rise in global sea levels of as much as three metres. The authors of the new Nature Communications paper, however, focus on two geophysical elements that they say aren't adequately reflected in computer simulations for this region: the surprisingly powerful gravitational pull of the immense ice sheet on surrounding water, and the unusually fluid nature of the mantle beneath the bedrock that the ice sits on. "The fate of the polar ice sheets in a warming world is a major concern for policy makers - and attention is rightly focused on the importance of restraining CO2 emissions and preparing for rising sea levels," says lead author Natalya Gomez, an assistant professor of Earth and Planetary Sciences at McGill University in Montreal. "But our study shows that for Antarctica, in particular, computer models also need to take into account how gravitational effects and variations in Earth structure could affect the pace of future ice-sheet loss."
The gravity effect As the West Antarctic Ice Sheet melts, the researchers project, the reduction in its mass would reduce the gravitational pull to such an extent that it would lower sharply the sea level near the ice. This, in turn, would slow the projected pace of retreat of the ice sheet.
The elasticity effect The West Antarctic sits atop a region where the mantle flows more easily than in other parts of the Earth. So the land there will pop up faster than scientists - and their computer models - would expect based on the average viscosity of the Earth's mantle. "Our simulations show that when we assume a structure for the Earth's interior that resembles the structure underneath the West Antarctic, the Earth's surface rebounds higher and more quickly near the edge of the retreating ice sheet," says co-author Holland of NYU. "This makes the water along that edge shallower, which slows the retreat of the ice sheet."
CO2 emissions a crucial factor "Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss", Natalya Gomez et al, Nature Communications, Nov. 10, 2015. DOI: 10.1038/ncomms9798
Related Links McGill University Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |