![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Brooks Hays Washington (UPI) Jul 8, 2019
Scientists have for the first time captured high-definition, 3D images of enzymes in the process of cutting DNA strands. The breakthrough -- described Monday in the journal Nature Structural and Molecular Biology -- helped scientists see exactly how the gene-editing technology called CRISPR-Cas9 works, and could, in the future, help researchers design a more efficient and precise version of the technology. The findings could also help scientists better understand -- and eventually, treat and prevent -- diseases caused by DNA mutations, including cancer, sickle cell anemia, Tay-Sachs disease, Huntington's disease and many others. "It is exciting to be able to see at such a high level of detail how Cas9 actually works to cut and edit DNA strands," lead study author Sriram Subramaniam, researcher at the University of British Columbia, said in a news release. "These images provide us with invaluable information to improve the efficiency of the gene-editing process so that we can hopefully correct disease-causing DNA mutations more quickly and precisely in the future." CRISPR-Cas9, or CRISPR for short, relies on the creation of double-strand breaks, or DSBs, in the genomic regions targeted for manipulation. CRISPR deploys enzymes that act as molecular scissors. Once the DNA is cut, the sequence can be altered. But CRISPR isn't perfect. Previous studies have shown the technology regularly creates unwanted mutations. To better understand how CRISPR works, scientists deployed an imaging technique called cryogenic electron microscopy, or cryo-EM. The images revealed the step-by-step molecular movements during the DNA-cutting process. "One of the main hurdles preventing the development of better gene-editing tools using Cas9 is that we didn't have any images of it actually cutting DNA," said University of Illinois researcher Miljan Simonovic, co-author of the new study. "But now we have a much clearer picture, and we even see how the major domains of the enzyme move during reaction and this may be an important target for modification."
![]() ![]() Mimicking the ultrastructure of wood with 3D-printing Gothenburg, Sweden (SPX) Jun 28, 2019 Researchers at Chalmers University of Technology, Sweden, have succeeded in 3D printing with a wood-based ink in a way that mimics the unique 'ultrastructure' of wood. Their research could revolutionise the manufacturing of green products. Through emulating the natural cellular architecture of wood, they now present the ability to create green products derived from trees, with unique properties - everything from clothes, packaging, and furniture to healthcare and personal care products. The ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |