![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Vienna, Austria (SPX) Apr 12, 2017
The first fully functional microprocessor logic devices based on few-atom-thick layered materials have been demonstrated by researchers from the Graphene Flagship, working at TU Vienna in Austria. The processor chip consists of 115 integrated transistors and is a first step toward ultra-thin, flexible logic devices. Using transistors made from layers of molybdenum disulphide (MoS2), the microprocessors are capable of 1-bit logic operations and the design is scalable to multi-bit operations. With the drive towards smart objects and the Internet of Things, the microprocessors hold promise for integrating computational power into everyday objects and surfaces. The research is published this week in Nature Communications. The Graphene Flagship is developing novel technologies based on graphene and related materials (GRMs) such as transition metal dichalcogenides (TMDs) like MoS2, semiconductor materials that can be separated into ultra-thin sheets just a few atoms thick. GRMs are promising for compact and flexible electronic devices due to their thinness and excellent electrical properties. The ultra-thin MoS2 transistors are inherently flexible and compact, so this result could be directly translated into microprocessors for fully flexible electronic devices, for example, wearable phones or computers, or for wider use in the Internet of Things. The MoS2 transistors are highly responsive, and could enable low-powered computers to be integrated into everyday objects without adding bulk. "In principle, it's an advantage to have a thin material for a transistor. The thinner the material, the better the electrostatic control of the transistor channel, and the smaller the power consumption," said Thomas Mueller (TU Vienna), who led the work. Mueller added "In general, being a flexible material there are new opportunities for novel applications. One could combine these processor circuits with light emitters that could also be made with MoS2 to make flexible displays and e-paper, or integrate them for logic circuits in smart sensors. Our goal is to realise significantly larger circuits that can do much more in terms of useful operations. We want to make a full 8-bit design - or even more bits - on a single chip with smaller feature sizes." Talking about increasing the computing power, Stefan Wachter (TU Vienna), first author of the work, said "Adding additional bits of course makes everything much more complicated. For example, adding just one bit will roughly double the complexity of the circuit." Compared to modern processors, which can have billions of transistors in a single chip, the 115-transistor devices are very simple. However, it is a very early stage for a new technology, and the team have concrete plans for the next steps: "Our approach is to improve the processing to a point where we can reliably make chips with a few tens of thousands of transistors. For example, growing directly onto the chip would avoid the transfer process, which would give higher yield so that we can go to more complex circuits," said Dmitry Polyushkin (TU Vienna), an author of the work.
![]() Raleigh NC (SPX) Mar 31, 2017 Researchers at North Carolina State University have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices. "Graphene is extremely conductive, but is not a semiconductor; graphene oxide has a bandgap like a ... read more Related Links Graphene Flagship Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |