Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
First fossil bird with teeth specialized for tough diet
by Staff Writers
Deerfield IL (SPX) Jan 09, 2013


Photograph of Sulcavis geeorum skull, a fossil bird from the Early Cretaceous (120 million-years-ago) of Liaoning Province, China with scale bar in millimeters. Credit: Photograph by Stephanie Abramowicz.

Beak shape variation in Darwin's finches is a classic example of evolutionary adaptation, with beaks that vary widely in proportions and shape, reflecting a diversity of ecologies. While living birds have a beak to manipulate their food, their fossil bird ancestors had teeth. Now a new fossil discovery shows some fossil birds evolved teeth adapted for specialized diets.

A study of the teeth of a new species of early bird, Sulcavis geeorum, published in the latest issue of the Journal of Vertebrate Paleontology, suggests this fossil bird had a durophagous diet, meaning the bird's teeth were capable of eating prey with hard exoskeletons like insects or crabs.

The researchers believe the teeth of the new specimen greatly increase the known diversity of tooth shape in early birds, and hints at previously unrecognized ecological diversity.

Sulcavis geeorum is an enantiornithine bird from the Early Cretaceous (121-125 million years ago) of Liaoning Province, China. Enantiornithine birds are an early group of birds, and the most numerous birds from the Mesozoic (the time of the dinosaurs).

Sulcavis is the first discovery of a bird with ornamented tooth enamel. The dinosaurs - from which birds evolved - are mostly characterized by carnivorous teeth with special features for eating meat.

The enantiornithines are unique among birds in showing minimal tooth reduction and a diversity of dental patterns. This new enantiornithine has robust teeth with grooves on the inside surface, which likely strengthened the teeth against harder food items.

No previous bird species have preserved ridges, striations, serrated edges, or any other form of dental ornamentation.

"While other birds were losing their teeth, enantiornithines were evolving new morphologies and dental specializations. We still don't understand why enantiornithines were so successful in the Cretaceous but then died out - maybe differences in diet played a part." says Jingmai O'Connor, lead author of the new study.

"This study highlights again how uneven the diversity of birds was during the Cretaceous. There are many more enantiornithines than any other group of early birds, each one with its own anatomical specialization." offers study co-author Luis Chiappe, from Natural History Museum of Los Angeles County.

The article appears in the Journal of Vertebrate Paleontology 33(1), published by Taylor and Francis; O'Connor, J.K., Y. Zhang, L. M. Chiappe, Q. Meng, L. Quanguo, and L. Di. 2013. A new enantiornithine from the Yixian formation with the first recognized avian enamel specialization. Journal of Vertebrate Paleontology 33(1):1-12.

.


Related Links
Society of Vertebrate Paleontology
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Giant fossil predator provides insights into the rise of modern marine ecosystem structures
Los Angeles CA (SPX) Jan 09, 2013
An international team of scientists has described a fossil marine predator measuring 8.6 meters in length (about 28 feet) recovered from the Nevada desert in 2010 as representing the first top predator in marine food chains feeding on prey similar to its own size. The 244-million-year-old fossil, named Thalattoarchon saurophagis (lizard-eating sovereign of the sea) is an early representati ... read more


EARLY EARTH
Mission would drag asteroid to the moon

Russia designs manned lunar spacecraft

GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

EARLY EARTH
Lockheed Martin Delivered Core Structure For First GOES-R Satellite

Opportunity Scores Another Dust Cleaning Event At Vermillion

Curiosity Rover Explores Yellowknife Bay

'Black Beauty' could yield Martian secrets

EARLY EARTH
2012 in Polish space activities

Captain's log: real space chat for Star Trek crew

Congress Approves Bill Supporting Human Space Exploration

China's Chengdu aiming to be world's next Silicon Valley

EARLY EARTH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

EARLY EARTH
Crew Wraps Up Robonaut Testing

Station Crew Ringing in New Year

Expedition 34 Ready to Ring in New Year

New ISS crew docked at Space Station

EARLY EARTH
Arianespace to launch VNREDSat-1A built by Astrium for Vietnam

Arianespace says 2012 sales leapt by 30%

CSF Applauds Passage Of Risk-Sharing Regime Extension For Launch Industry

Rokot Launch Set for January 15

EARLY EARTH
15 New Planets Hint At "Traffic Jam" Of Moons In Habitable Zone

Within 'Habitable Zone,' More Planets than We Knew

At Least One in Six Stars Has an Earth-sized Planet

Exocomets may be as common as exoplanets

EARLY EARTH
Cloud computing expands in Latin America

LEON: the space chip that Europe built

That's not what I meant: A new phase in reading photons

Space Trash May Make Radiation Shields




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement