![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Laurel MD (SPX) May 20, 2016
Scientists on NASA's New Horizons team say the spacecraft succeeded in observing the first occultations of Pluto's atmosphere by ultraviolet stars, an important goal of the mission's Pluto encounter. These data, stored on New Horizons' digital recorders since last summer's encounter and recently transmitted to Earth, confirm several major findings about Pluto's atmosphere. Approximately four hours after New Horizons made its closest approach to Pluto on July 14 - when the spacecraft was about 200,000 miles (320,000 kilometers) beyond Pluto - the Alice ultraviolet spectrometer instrument on board the spacecraft "watched" as two bright ultraviolet stars passed behind Pluto and its atmosphere. The light from each star dimmed as it moved through deeper layers of Pluto's atmosphere, absorbed by various gases and hazes. Much like the solar occultation that Alice had observed a few hours before - when it used sunlight to make similar measurements - these stellar occultations provided information about the composition and structure of Pluto's atmosphere. Both stellar occultations revealed ultraviolet spectral fingerprints of nitrogen, hydrocarbons like methane and acetylene, and even haze, just as the solar occultation had done earlier. The results from the solar and stellar occultations are also consistent in terms of vertical pressure and temperature structure of Pluto's upper atmosphere. This means that the upper atmosphere vertical profiles of nitrogen, methane, and the observed hydrocarbons are similar over many locations on Pluto. These results confirm findings from the Alice solar occultation that the upper atmospheric temperature is as much as 25 percent colder and thus more compact than what scientists predicted before New Horizons' encounter. This also confirms, albeit indirectly, the result from analysis and modeling of the Alice solar observation that the escape rate of nitrogen is about 1,000 times lower than expected before the flyby.
Related Links New Horizons The million outer planets of a star called Sol
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |