. 24/7 Space News .
CHIP TECH
First 3-D imaging of excited quantum dots
by Staff Writers
Washington DC (SPX) Feb 15, 2018

Toward single-particle tomography of excited nanomaterials Top: Side-view image of a quantum dot with a defect excited by a laser (green) rolled to present a different orientation. STM: Conventional STM image of a quantum dot before (right) and after a roll (left). SMA: Slice through the electronic density of the excited quantum dot before and after the same roll. DFT (density functional theory): 3-D quantum calculation of a quantum dot defect projected into slices at two orientations for comparison with experiment. Image courtesy Martin Gruebele.

Quantum dots are rapidly taking center stage in emerging applications and research developments, from enhanced LCD TVs and thin-film solar cells, to high-speed data transfer and fluorescent labeling in biomedical applications.

Researchers are still studying how to precisely control the growth of these nanoscale particles and their underlying quantum behavior. For instance, defects form during production of semiconductor materials, so identical dots can differ in composition from one another.

To learn more about these defects - and whether they are a bane or an advantage - a U.S. research team, from the University of Illinois and the University of Washington, has, for the first time, demonstrated imaging of an electronically excited quantum dot at multiple orientations. They report their findings this week in The Journal of Chemical Physics, from AIP Publishing.

"Understanding how the presence of defects localizes excited electronic states of quantum dots will help to advance the engineering of these nanoparticles," said Martin Gruebele from the University of Illinois at Urbana-Champaign and a co-author of the paper.

Defects are often considered a hassle, but in the case of quantum dot applications, they are purposely created by doping any number of materials to impart specific functions.

"[M]issing atoms in a quantum dot or substituting a different kind of atom are defects that will alter the electronic structure and change the semiconductivity, catalysis or other nanoparticle properties," Gruebele said.

"If we can learn to characterize them better and precisely control how they are produced, defects will become desirable dopants instead of a nuisance."

In 2005, Gruebele's team created a new imaging technique, called single molecule absorption scanning tunneling microscopy (SMA-STM), that combines the high spatial resolution of a scanning tunneling microscope with the spectral resolution of a laser. SMA-STM allows individual nanoparticles to be imaged in a laser beam, so their excited electronic structure can be visualized.

Using the thin, sharp metal wire tip of the scanning tunneling microscope, they roll the laser-excited quantum dot on the surface to image slices at different orientations. The slices can be combined to reconstruct a 3-D image of an electronically excited quantum dot.

While the research in this article was limited to lead sulfide and cadmium selenide/zinc sulfide quantum dots, the technique can potentially be expanded to other compositions. Furthermore, SMA-STM can also be used to explore other nanostructures, such as carbon nanotubes and photocatalytic metal clusters.

Researchers are now working to advance SMA-STM into a single-particle tomography technique. But, before SMA-STM becomes a "true single-particle tomography approach," they still have to ensure that the scanning and rolling does not damage the nanoparticle while it is being reoriented.

"We speculate that, in the future, it may be possible to do single-particle tomography if damage to quantum dots can be avoided during repeated manipulation," Gruebele said.

Single-particle tomography would provide a clearer picture than conventional tomography by singling out defects in individual nanoparticles rather than re-creating an averaged 3-D image that combines the measurements of many particles.

The article, "Orientation-dependent imaging of electronically excited quantum dots," is authored by Duc A. Nguyen, Joshua Goings, Huy A. Nguyen, Joseph Lyding, Xiaosong Li and Martin Gruebele. The article will appear in The Journal of Chemical Physics Feb. 8, 2018 (DOI: 10.1063/1.5012784).


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Understanding heat behavior in electronic devices boosts performance
Barcelona, Spain (SPX) Feb 05, 2018
In a paper published last week in the journal Nature Communications, researchers from the Department of Physics and the Department of Electronics Engineering at the UAB, and from the Birck Nanotechnology Center at Purdue University (USA), studied the heating of small current lines placed on top of a silicon substrate, simulating the behavior of current transistors. This work shows how these metal lines heat up in a way that cannot be explained with the laws ruling heat behavior in our everyday exp ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
All-in-one service for the Space Station

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

CHIP TECH
Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

CHIP TECH
Mars Opportunity Rover Energy Levels Improve

A Piece of Mars is Going Home

Danish architect envisions life on Mars

Leaky Atmosphere Linked To Lightweight Planet

CHIP TECH
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

CHIP TECH
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

CHIP TECH
Raytheon to upgrade radar systems in Hornet aircraft

Self-Driving Servicer Now Baselined for NASA's Restore-L Satellite-Servicing Demonstration

A new radiation detector made from graphene

Super wood could replace steel

CHIP TECH
Deep-sea fish use hydrothermal vents to incubate eggs

'Oumuamua has been tumbling about the galaxy for a billion years

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

CHIP TECH
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.