Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Finding May End A 30-Year Scientific Debate
by Staff Writers
Kingston, Canada (SPX) Apr 13, 2011


Peter Davies, Rob Campbell and Christopher Garnham are the biochemistry researchers whose discovery about the precise way antifreeze proteins bind to the surface of ice crystals may end a decades-old scientific debate.

A chance observation by a Queen's researcher might have ended a decades-old debate about the precise way antifreeze proteins (AFP) bind to the surface of ice crystals.

"We got a beautiful view of water bound to the ice-binding site on the protein," says Peter Davies, a professor in the Department of Biochemistry and a world leader in antifreeze protein research. "In a sense we got a lucky break."

AFPs are a class of proteins that bind to the surface of ice crystals and prevent further growth and recrystallization of ice. Fish, insects, bacteria and plants that live in sub-zero environments all rely on AFPs to survive.

AFPs are also important to many industries, including ice cream and frozen yogurt production which relies on AFPs to control ice-crystal growth.

The implications of this finding reach far beyond creating low-fat, high water-content ice cream that maintains a rich, creamy texture.

Having a clear idea of how AFPs bind to the surface of ice crystals would allow researchers and industries to engineer strong, versatile AFPs with countless commercial applications ranging from increasing the freeze tolerance of crops to enhancing the preservation of transplant organs and tissues.

While determining the crystal structure of an AFP from an Antarctic bacterium, biochemistry doctoral candidate Christopher Garnham was fortunate enough to see an exposed ice-binding site-a rare find in the field of AFP crystallography that Mr. Garnham studies.

The ice binding surface of an AFP contains both hydrophobic or 'water repelling' groups as well as hydrophilic or 'water loving' groups. Until now, the exact function of these counter-acting forces with respect to ice-binding was unknown.

While the presence of water repellent sites can appear counterintuitive on a protein that bonds with ice, Mr. Garnham and Dr. Davies are hypothesizing that the function of these water repellent sites is to force water molecules near the surface of the protein into an ice-like cage that mirrors the pattern of water molecules on the surface of the ice crystal.

The water-loving sites on the protein's surface then anchor this ice-like cage to the protein via hydrogen bonds. Not until the ordered waters are anchored to the AFP is it able to bond to ice.

.


Related Links
Queen's University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Tissue Engineers Use New System To Measure Biomaterials, Structures
Providence RI (SPX) Apr 13, 2011
Tissue engineering makes biologists builders, but compared to their civil engineering counterparts, they don't know much about the properties of the materials and structures they use, namely living cells. To improve that knowledge, Brown University researchers have developed a simple and reliable system for measuring the power that cells employ to assemble into three-dimensional tissue. Th ... read more


TECH SPACE
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

TECH SPACE
Several Drives This Week Put Opportunity Over 17-Mile Mark

Next Mars Rover Nears Completion

Mars In Spain

Study Of 'Ruiz Garcia' Rock Completed

TECH SPACE
"I See Earth! It Is So Beautiful!"

Report Provides NASA With Direction For Next 10 Years Of Space Research

Last legends of early space flight laud Gagarin

Spacelinq The First European Space Liner

TECH SPACE
Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

TECH SPACE
The MELFI Shuffle: Contingency Planning For Preserving Samples

Space Debris No Threat To ISS

Astronauts head to ISS on spaceship Gagarin

Station Fires Engines To Avoid Orbital Debris

TECH SPACE
Arianespace to launch ASTRA 2E Satellite

PSLV Launch On April 20

Russia Looks To Grab Half Of World Space Launch Market

Mitsubishi Electric's ST-2 Satellite Arrives In French Guiana

TECH SPACE
A New Way To Find Planets

Telescope Ferrets Out Planet-Hunting Targets

White Dwarfs Could Be Fertile Ground For Other Earths

NASA Announces 2011 Carl Sagan Fellows

TECH SPACE
WHO eyes 20 year nuclear health watch in Japan

Tissue Engineers Use New System To Measure Biomaterials, Structures

Finding May End A 30-Year Scientific Debate

Researchers Find Replacement For Rare Material Indium Tin Oxide




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement