. | . |
Fabrication technology in the fourth dimension by Staff Writers Zurich, Switzerland (SPX) May 11, 2017
3D printers have become a standard fixture in many research laboratories - and now a select number of researchers are already looking to add yet another dimension to the technology: time. Kristina Shea, head of the Engineering Design and Computing Lab at ETH Zurich, is one of these scientists. 4D printing creates moveable and shape variable objects such as flat components that can be folded into three-dimensional objects at a later point, or even objects that can change their shape as a function of external influences. Professor Shea and her group have now taken this approach one step further by developing a construction principle that allows them to control the deformation. "The flat structures we produce do not change their configuration randomly, but rather exactly in the way we design them," says Tian Chen, a doctoral student in Shea's group. The structures can also support weight. The ETH scientists are the first to create these kinds of load-bearing 4D printed objects.
Element with two states This also allows structures that can take on several stable forms. And as the researchers have also developed simulation software, they can predict accurately the shapes and the force that must be applied to produce the deformation. This helps them in the design of objects. The scientists printed their structures with a professional multi-material 3D printer, which can print objects from up to 40 different materials. The objects created by the ETH scientists comprise two of them: a rigid polymer that makes up most of the structure and an elastic polymer for the moving parts. The researchers print all parts in a single step.
Efficient and fast Plus, the flat structure saves space in transport and can then be deployed at the final destination. Similar approaches have been used in aerospace for quite some time now; for example, to transport structures into space in a compressed space-saving state. Aerospace is thus one possible application for 4D printing. But the scientists are also considering the simple construction of ventilation systems, systems for opening and closing valves or medical applications, such as stents. Currently, the scientists are reconfiguring these structures by hand, but they are working on a drive for their elements that will extend the structures in reaction to temperature. They also say it might be possible to control the structures using pneumatic tubing (compressed air) or swelling materials that change shape depending on humidity. Chen T, Mueller J, Shea K: Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing. Scientific Reports 2017, 7: 45671, doi: 10.1038/srep45671
Durham NC (SPX) May 10, 2017 Researchers at Duke University have 3-D printed potent electromagnetic metamaterials, using an electrically conductive material compatible with a standard 3-D printer. The demonstration could revolutionize the rapid design and prototyping of radio frequency applications such as Bluetooth, Wi-Fi, wireless sensing and communications devices. Metamaterials are synthetic materials compos ... read more Related Links ETH Zurich Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |