. | . |
FINESSE Mission to Investigate Atmospheres of Hundreds of Alien Worlds by Tomasz Nowakowski for AstroWatch Los Angeles CA (SPX) Sep 05, 2017
One of NASA's proposed missions, known as the Fast INfrared Exoplanet Spectroscopy Survey Explorer (FINESSE) could greatly improve our understanding of extrasolar worlds. If selected for development, the spacecraft will investigate at least 500 exoplanet atmospheres, providing detailed information about climate processes on distant alien planets. FINESSE has been recently chosen by NASA for concept studies and evaluations. It is one of the agency's six astrophysics Explorers Program proposals that could be selected by 2019 to proceed with construction and launch. The mission's main objective is to study the processes that govern planet formation and global climate. It will investigate the mechanisms that establish atmospheric chemical composition and shape atmospheric evolution. "FINESSE will spectroscopically observe the atmospheres of many hundreds of transiting exoplanets to measure their molecular abundances and thermal profiles," Robert Zellem, FINESSE science team member at NASA's Jet Propulsion Laboratory (JPL), told Astrowatch.net. In order to conduct the planned studies, FINESSE will use the transit method. It will measure how a planet's atmosphere absorbs light from its host star as a function of wavelength. This will allow to infer the molecules in the planet's atmosphere. "By doing this for hundreds of planets, FINESSE will determine how planets form and the crucial factors that establish planetary climate," Zellem said. These observations will require a proper imaging system. That is why the FINESSE spacecraft will be equipped in a telescope with a 75-centimeter (29.5-inch) primary mirror and a spectrometer that will observe planets in the visible and infrared wavelengths (from 0.5 to 5 microns). According to Zellem, wide spectral coverage will enable FINESSE to measure the abundances of molecules such as water, methane, carbon dioxide, and carbon monoxide as well as look for the presence of clouds and hazes. Data collected by the spacecraft are expected to provide important information that could improve our knowledge about various exoplanets, from rocky terrestrial planets to gas giants like Jupiter. FINESSE could help us discover what these alien worlds are like, determining what makes them they way they are, and allowing this knowledge to be applied in the broader planetary context, including the search for life outside of our Solar System. If selected for the development, FINESSE is targeted for the launch around 2023. Zellem hopes that during its operational lifetime of two years it will carry out important observations of even more than 1,000 extrasolar worlds. "FINESSE has the capability in its two year mission to observe the atmospheres of over 1000 transiting exoplanets," he concluded. + More about FINESSE here
Greenbelt MD (SPX) Sep 11, 2017 NASA researchers say they have passed a major milestone in their quest to mature more powerful tools for directly detecting and analyzing the atmospheres of giant planets outside the solar system - one of the observational goals of NASA's proposed Wide-Field Infrared Space Telescope, also known as WFIRST. In tests conducted at the High-Contrast Imaging Testbed at NASA's Jet Propulsion Labo ... read more Related Links AstroWatch Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |