. 24/7 Space News .
IRON AND ICE
FEFU astrophysicists studied asteroid 3200 Phaeton
by Staff Writers
Vladivostok, Russia (SPX) Oct 30, 2018

These radar images of near-Earth asteroid 3200 Phaethon were generated by astronomers at the National Science Foundation's Arecibo Observatory on Dec. 17, 2017. Observations of Phaethon were conducted at Arecibo from Dec.15 through 19, 2017. At time of closest approach on Dec. 16 at 3 p.m. PST (6 p.m. EST, 11 p.m. UTC) the asteroid was about 6.4 million miles (10.3 million kilometers) away, or about 27 times the distance from Earth to the moon. The encounter is the closest the object will come to Earth until 2093.

Polarimetric investigation of a near-Earth asteroid Phaethon was carried out in December 2017 on its closest approach to the Earth. The study was conducted in collaboration with scientists from the Ussuriysk Astrophysical Observatory and the Astronomical Institute of the Slovak Academy of Sciences.

The article reporting the results of the observational campaign have been submitted to the scientific journal Astronomy and Astrophysics, where it successfully underwent the peer-review process and got accepted for publication.

PhD-students Ekaterina Chornaya, Anton Kochergin and graduated student Alexey Matkin, led by Evgenij Zubko, the leading researcher at the Far Eastern Federal University (FEFU) School of Natural Sciences, studied the asteroid 3200 Phaeton using the polarimetric method.

They measured the degree of linear polarization of the sunlight scattered from the asteroid in collaboration with their colleagues from the Ussuriysk Astrophysical Observatory and the Astronomical Institute of the Slovak Academy of Sciences.

"In this study, I particularly appreciate the fact that, using very simple and relatively inexpensive tools, we have achieved the results which importance is comparable with those obtained with much bigger instruments in the world-leading astronomical observatories. We studied the Phaeton with a small telescope whose aperture (a primary mirror diameter) is of only 22 cm.

However, we obtained results at the quite good quality. Surprisingly, our results appear to be more accurate than those were measured by some of our colleagues with much more powerful telescopes. This came true because of our non-standard solution: We decided to avoid any photometric filters except for the polarimeter." - commented on Evgenij Zubko.

The scientist emphasized that Phaeton is of high interest for astronomers because of several reasons. First, it is a near-Earth object, which makes it possible to study Phaeton by various methods, including radars.

Second, the asteroid has a very much elongated orbit and approaches the Sun at close distance, 1/6 of the Sun-Earth distance. For that reason, it gets heated up 750-1000 Kelvin (476 - 726 Celsius) every one and half year. That's why it was named after Phaeton, the hero of the Greek myth, the son of Helios (god of the Sun).

The FEFU astrophysicists have shown that the Umov effect can be applied to the studies of asteroids, just like to the studies of comets. This physical law was discovered in 1905 by the Russian physicist Nikolai Umov.

The crux of it is that there is an inverse correlation between the reflectivity of the surface and the degree of linear polarization of the sunlight scattered by it. In other words, the brighter is an object, the lower polarization it produces.

Since the Umov law was originally developed to study the surfaces of relatively large objects such as the Moon, it should be proven that it could also be used in application to the small bodies of the Solar System - comets and asteroids.

At the same time, the Umov law requires a very specific geometry of observation of the object that is difficult to achieve on practice for most of these small bodies. With Phaeton, it is possible due to its close encounters with the Earth.

"The point is that the favorable conditions for observation of Phaethon happen every few years; whereas, the best observational circumstances occur only few times per century," says Evgenij Zubko.

"In order to accurately retrieve the Umov law in asteroids, the investigation of several different asteroids is needed. We have now one such asteroid whose study has been already successfully accomplished. It is necessary to conduct an investigation of at least one more asteroid, preferably with substantially different polarization characteristics, in order to approximately estimate the Umov effect for asteroids," the scientist went on.

According to the FEFU PhD-student Ekaterina Chornaya, their research list contains about 10 potential objects for study during the next two years and a subsequent comparison of their characteristics with Phaeton.

When Phaeton was approaching the Earth in December 2017, it was observed by at least four groups of scientists in different parts of the globe. The results of measurements of the linear polarization of the sunlight reflected by the asteroid vary considerably from one group to another. This is noteworthy. Typically, observations of asteroids carried out by different teams tend to converge to nearly the same result.

"A possible explanation is that the surface of the asteroid is highly heterogeneous: It may consist of different types of materials and/or has different microphysical properties of regolith. We can get such dispersion of the results because of the asteroid rotates fairly quickly and it can be observed from all sides during one night, " explains Evgenij Zubko, who made a preliminary report on the results of the Phaeton polarimetric study at The Ninth Moscow Solar System Symposium 9M-S3.

Research paper


Related Links
Far Eastern Federal University
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Hayabusa2 team prepares for asteroid sample collection
Tucson AZ (SPX) Oct 26, 2018
JAXA's (Japan Aerospace Exploration Agency's) Hayabusa2 mission is on track to return samples from its target asteroid, 162173 Ryugu, a C-type near-Earth asteroid (NEA). The past month has seen the successful deployment of two rovers and a lander. The mission focus is now on the successful retrieval and return of a surface sample. Two members of the Planetary Science Institute's (PSI's) science staff are on the Hayabusa2 science team as part of NASA's Participating Scientist program, a cooperative ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Plant hormone makes space farming a possibility

Installing life support the hands-free way

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

IRON AND ICE
Viasat, SpaceX Enter Contract for a Future ViaSat-3 Satellite Launch

Astronauts confident of next crewed Soyuz mission to Space Station

Russia launches first Soyuz rocket since failed space launch

Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

IRON AND ICE
Mars Express keeps an eye on curious cloud

Minerals of the world, unite

NASA's InSight will study Mars while standing still

NASA Mars team actively listening out for Opportunity

IRON AND ICE
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

IRON AND ICE
ESA on the way to Space19+ and beyond

Ministers endorse vision for the future of Europe in space

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

Space industry entropy

IRON AND ICE
The surprising coincidence between two overarchieving NASA missions

Air Force contract Ball Aerospace for laser research

Memory-steel makes for new material to strengthen buildings

New composite material that can cool itself down under extreme temperatures

IRON AND ICE
Rocky and habitable - sizing up a galaxy of planets

Some planetary systems just aren't into heavy metal

Algorithm takes search for habitable planets to the next level

Superflares From Young Red Dwarf Stars Imperil Planets

IRON AND ICE
Europa plume sites lack expected heat signatures

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.