. 24/7 Space News .
ENERGY TECH
Extending the life of low-cost, compact, lightweight batteries
by David L. Chandler for MIT News
Boston MA (SPX) Nov 09, 2018

Researchers demonstrating the ability of aluminum to repel oil underwater.

Metal-air batteries are one of the lightest and most compact types of batteries available, but they can have a major limitation: When not in use, they degrade quickly, as corrosion eats away at their metal electrodes. Now, MIT researchers have found a way to substantially reduce that corrosion, making it possible for such batteries to have much longer shelf lives.

While typical rechargeable lithium-ion batteries only lose about 5 percent of their charge after a month of storage, they are too costly, bulky, or heavy for many applications. Primary (nonrechargeable) aluminum-air batteries are much less expensive and more compact and lightweight, but they can lose 80 percent of their charge a month.

The MIT design overcomes the problem of corrosion in aluminum-air batteries by introducing an oil barrier between the aluminum electrode and the electrolyte - the fluid between the two battery electrodes that eats away at the aluminum when the battery is on standby. The oil is rapidly pumped away and replaced with electrolyte as soon as the battery is used. As a result, the energy loss is cut to just 0.02 percent a month - more than a thousandfold improvement.

The findings are reported in the journal Science by former MIT graduate student Brandon J. Hopkins '18, W.M. Keck Professor of Energy Yang Shao-Horn, and professor of mechanical engineering Douglas P. Hart.

While several other methods have been used to extend the shelf life of metal-air batteries (which can use other metals such as sodium, lithium, magnesium, zinc, or iron), these methods can sacrifice performance Hopkins says. Most of the other approaches involve replacing the electrolyte with a different, less corrosive chemical formulation, but these alternatives drastically reduce the battery power.

Other methods involve pumping the liquid electrolyte out during storage and back in before use. These methods still enable significant corrosion and can clog plumbing systems in the battery pack. Because aluminum is hydrophilic (water-attracting) even after electrolyte is drained out of the pack, the remaining electrolyte will cling to the aluminum electrode surfaces. "The batteries have complex structures, so there are many corners for electrolyte to get caught in," which results in continued corrosion, Hopkins explains.

A key to the new system is a thin membrane placed between the battery electrodes. When the battery is in use, both sides of the membrane are filled with a liquid electrolyte, but when the battery is put on standby, oil is pumped into the side closest to the aluminum electrode, which protects the aluminum surface from the electrolyte on the other side of the membrane.

The new battery system also takes advantage of a property of aluminum called "underwater oleophobicity" - that is, when aluminum is immersed in water, it repels oil from its surface. As a result, when the battery is reactivated and electrolyte is pumped back in, the electrolyte easily displaces the oil from the aluminum surface, which restores the power capabilities of the battery. Ironically, the MIT method of corrosion suppression exploits the same property of aluminum that promotes corrosion in conventional systems.

The result is an aluminum-air prototype with a much longer shelf life than that of conventional aluminum-air batteries. The researchers showed that when the battery was repeatedly used and then put on standby for one to two days, the MIT design lasted 24 days, while the conventional design lasted for only three. Even when oil and a pumping system are included in scaled-up primary aluminum-air battery packs, they are still five times lighter and twice as compact as rechargeable lithium-ion battery packs for electric vehicles, the researchers report.

Hart explains that aluminum, besides being very inexpensive, is one of the "highest chemical energy-density storage materials we know of" - that is, it is able to store and deliver more energy per pound than almost anything else, with only bromines, which are expensive and hazardous, being comparable. He says many experts think aluminum-air batteries may be the only viable replacement for lithium-ion batteries and for gasoline in cars.

Aluminum-air batteries have been used as range extenders for electric vehicles to supplement built-in rechargeable batteries, to add many extra miles of driving when the built-in battery runs out. They are also sometimes used as power sources in remote locations or for some underwater vehicles. But while such batteries can be stored for long periods as long as they are unused, as soon as they are turned on for the first time, they start to degrade rapidly.

Such applications could greatly benefit from this new system, Hart explains, because with the existing versions, "you can't really shut it off. You can flush it and delay the process, but you can't really shut it off." However, if the new system were used, for example, as a range extender in a car, "you could use it and then pull into your driveway and park it for a month, and then come back and still expect it to have a usable battery. ... I really think this is a game-changer in terms of the use of these batteries."

With the greater shelf life that could be afforded by this new system, the use of aluminum-air batteries could "extend beyond current niche applications," says Hopkins. The team has already filed for patents on the process.


Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
E-magy Silicon enhances Lithium Ion Batteries, targeting for 50% additional capacity
Broek op Langedijk, Netherlands (SPX) Nov 05, 2018
RGS has announced the launch of its E-magy nano-porous silicon to improve lithium-ion batteries, mostly for the electric vehicle market. This special silicon is used in the anode of Li-ion batteries to enhance their capacity. E-magy can increase the capacity of Li-ion battery anodes to meet industry targets by up to fifty percent (50%) additional capacity. This translates into electric vehicle ranges of well above 500 km without adding more batteries. To provide its customers with larger quantitie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Experience high-res science in first 8K footage from space

Roscosmos, NASA to adjust ISS program to fit with lunar missions

Russia plans first manned launch to ISS Dec 3 after accident

Thrusters with additively manufactured components qualified to fly humans on Orion spacecraft

ENERGY TECH
Simulating hypersonic flow transitions from smooth to turbulent

Hole in Soyuz MS-09 hull could have been drilled before launch

Rocket Lab enters high frequency launch operations

Soyuz launch failed due to assembly problem: Russia

ENERGY TECH
Water cycle along the northern rim of Hellas Basin throughout Mars' history

Five things to know about InSight's Mars landing

Naturally occurring 'batteries' fueled organic carbon synthesis on Mars

NASA launches a new podcast to Mars

ENERGY TECH
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

ENERGY TECH
Telstar 18 VANTAGE satellite now operational over Asia Pacific

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

SpaceFund launches the world's first space security token to fund the opening of the high frontier

ESA on the way to Space19+ and beyond

ENERGY TECH
Doing the wave: how stretchy fluids react to wavy surfaces

Video game action heads for the cloud

Making steps toward improved data storage

Flow units: Dynamic defects in metallic glasses

ENERGY TECH
NASA retires Kepler Space Telescope, passes planet-hunting torch

Rocky and habitable - sizing up a galaxy of planets

Some planetary systems just aren't into heavy metal

Giant planets around young star raise questions about how planets form

ENERGY TECH
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.