. | . |
Evidence of repeated rapid retreat of the East Antarctic ice sheet by Staff Writers Austin TX (SPX) May 20, 2016
Research published in the journal Nature on May 19, 2016 has revealed that vast regions of the Totten Glacier in East Antarctica are fundamentally unstable and have contributed significantly to rising sea levels several times in the past. Totten Glacier is the most rapidly thinning glacier in East Antarctica, and this study raises concerns that a repeat scenario could be underway as the climate warms. An international consortium led by The University of Texas at Austin's Institute for Geophysics (UTIG), a unit at the university's Jackson School of Geosciences, led the research and data collection for the study. Alan Aitken of the University of Western Australia's School of Earth and Environment was lead author. Totten Glacier is East Antarctica's largest outlet of ice and a key region for understanding the large-scale and long-term vulnerabilities of the Antarctic Ice Sheet. Until now, knowledge of the region's glacial history has been very limited. While other studies have indicated that this region of the ice sheet may have retreated in the past, this study reveals direct linkages between the modern Totten Glacier and the eroded landscape currently buried in ice hundreds of kilometers inland. "We now know how the ice sheet evolves over the landscape in East Antarctica and where it is susceptible to rapid retreat, which gives us insight into what is likely to happen in the years ahead," said ICECAP lead Principal Investigator Donald D. Blankenship, Senior Research Scientist at UTIG. Totten Glacier's catchment is a collection basin for ice and snow that flows through the glacier. "Totten Glacier's catchment is covered by nearly two-and-a-half miles of ice, filling a California-sized sub-ice basin that reaches depths of over one mile below sea level," Blankenship said. "This study shows that this system could have a large impact on sea level in a short period of time." The UTIG-led ICECAP (International Collaboration for Exploration of the Cryosphere through Aerogeophysical Profiling) project collected the data over five Antarctic field campaigns using an aircraft equipped with instruments to assess the ice and measure the shape of the landscape and rocks beneath it. The airplane was outfitted with radar that can measure ice several miles thick, lasers to measure the shape and elevation of the ice surface, and equipment that senses the Earth's gravity and magnetic field strengths, which are used to infer the sub-ice geology. The study used ice-penetrating radar, magnetic and gravity data to determine the thickness of the ice-sheet and the sediment thickness under the ice sheet. These were used to map glacial erosion beneath the ice and find two unstable zones where the ice sheet is prone to rapid collapse. "By examining the characteristic patterns of erosion left by past ice sheet advance and retreat, revealed through mapping the topographic surface and the thickness of sedimentary rocks beneath, this paper demonstrates direct evidence of past changes in the ice sheet in the Totten region," Aitken said. The study found the transition between the stable and unstable states has occurred repeatedly during the life of the ice sheet. "If this was to happen again, with a warmer climate than today, it could lead to a rapid rise in sea level of over a meter," Aitken said.
Related Links University of Texas at Austin Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |