. | . |
Evidence for carbon-rich surface on Ceres by Staff Writers San Antonio TX (SPX) Dec 10, 2018
A team led by Southwest Research Institute has concluded that the surface of dwarf planet Ceres is rich in organic matter. Data from NASA's Dawn spacecraft indicate that Ceres' surface may contain several times the concentration of carbon than is present in the most carbon-rich, primitive meteorites found on Earth. "Ceres is like a chemical factory," said SwRI's Dr. Simone Marchi, a principal scientist who was the lead author of research published in Nature Astronomy. "Among inner solar system bodies, Ceres has a unique mineralogy, which appears to contain up to 20 percent carbon by mass in its near surface. Our analysis shows that carbon-rich compounds are intimately mixed with products of rock-water interactions, such as clays." Ceres is believed to have originated about 4.6 billion years ago at the dawn of our solar system. Dawn data previously revealed the presence of water and other volatiles, such as ammonium derived from ammonia, and now a high concentration of carbon. This chemistry suggests Ceres formed in a cold environment, perhaps outside the orbit of Jupiter. An ensuing shakeup in the orbits of the large planets would have pushed Ceres to its current location in the main asteroid belt, between the orbits of Mars and Jupiter. "With these findings, Ceres has gained a pivotal role in assessing the origin, evolution and distribution of organic species across the inner solar system," Marchi said. "One has to wonder about how this world may have driven organic chemistry pathways, and how these processes may have affected the make-up of larger planets like the Earth." Geophysical, compositional and collisional models based on Dawn data revealed that Ceres' partially differentiated interior has been altered by fluid processes. Dawn's Visible and Infrared Mapping Spectrometer has shown that the overall low albedo of Ceres' surface is a combination of rock-water interaction products such as phyllosilicates and carbonates and a significant amount of spectrally neutral darkening agents, such as an iron oxide called magnetite. Because Dawn's Gamma Ray and Neutron Detector limits magnetite to only a few percent by mass, the data point to the presence of an additional darkening agent, probably amorphous carbon, a carbon-rich organic material. Interestingly, specific organic compounds have also been detected near a 31-mile-wide impact crater named Ernutet, giving further support to the widespread presence of organics in Ceres' shallow subsurface. The new study also finds that 50-60 percent of Ceres' upper crust may have a composition similar to primitive carbonaceous chondrite meteorites. This material is compatible with contamination from infalling carbonaceous asteroids, a possibility supported by Ceres' battered surface. "Our results imply that either Ceres accreted ultra-carbon-rich materials or that carbon was concentrated in its crust," Marchi said. "Both potential scenarios are important, because Ceres' mineralogical composition indicates a global-scale event of rock-water alteration, which could provide conditions favorable to organic chemistry."
Research Report: "An Aqueously Altered Carbon-Rich Ceres," Simone Marchi et al., 2018 Dec. 10, Nature Astronomy
Planetary Defense: The Bennu Experiment Greenbelt MD (SPX) Dec 07, 2018 On Dec. 3, after traveling billions of kilometers from Earth, NASA's OSIRIS-REx spacecraft reached its target, Bennu, and kicked off a nearly two-year, up-close investigation of the asteroid. It will inspect nearly every square inch of this ancient clump of rubble left over from the formation of our solar system. Ultimately, the spacecraft will pick up a sample of pebbles and dust from Bennu's surface and deliver it to Earth in 2023. Generations of planetary scientists will get to study pieces of ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |