. 24/7 Space News .
ENERGY TECH
Enhancing lab-on-a-chip peristalsis with electro-osmosis
by Staff Writers
Washington DC (SPX) May 12, 2016


This is a diagram of electric fields employed for modification of electrolytic flow through peristalsis. Image courtesy A. Bandopadhyay&S. Chakraborty /Univ. Rennes&Indian Institute of Technology Kharagpur. For a larger version of this image please go here.

If you've ever eaten food while upside down - and who hasn't indulged this chimpanzee daydream? - you can thank the successive wave-like motions of peristalsis for keeping the chewed bolus down and ferrying it into your stomach.

In mechanical microdevices, this method of transport moves fluids without a separate pump- saving precious space in lab-on-a-chip and futuristic organ-on-a-chip devices - but this transport method is difficult to finely control.

To remedy this, researchers at the Indian Institute of Technology's Advanced Technology Development Center in Kharagpur, West Bengal have conducted lubrication theory-based analyses to explore the hydrodynamic effects of improving flow rate in pre-existing peristaltic hardware relying on an external electric field.

Their research, which assesses the combined effects of electric fields and peristalsis on the channel flow rate, appears this week in Physics of Fluids, from AIP Publishing.

"Through our theoretical analysis, we've shown that by keeping the same peristalsis hardware, we may obtain an enhanced on-the-fly controllability of the flow rate by augmenting the device with electric fields," said Suman Charkraborty, a professor in the institute's Mechanical Engineering Department, and the Head of its School of Medical Science and Technology.

According to Chakraborty, an electric field component can easily be implemented because existing microtubule fabrication often involves sputtering electrodes onto the ends of the tubes - when a field is switched on, these electrodes cause fluid flow by attracting charged fluid toward the compatible electrode.

This has the potential to aid researchers in studying targeted drug delivery, augmenting biophysical fluid transport in human bodies, and observing and controlling chemical reaction and mixing in surface-modulated fluid flow environments, Chakraborty said.

Future work for Chakraborty and his colleagues includes analyzing the motion of charged particles in the electroosmotically-modulated peristaltic environment - a tricky matter, due to the interactions between fluidic drag, fluid flow via the electric field, and electrophoretic particle motion.

The researchers are also working to develop nanoscale energy harvesting, microfluidics-based portable kits for rapid medical diagnostics, and microfluidic tools to deepen our understanding of the physiological dynamics of living systems.

Research paper: "Electroosmosis-modulated peristaltic transport in microfluidic channels,"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Researchers integrate diamond/boron layers for high-power devices
Raleigh NC (SPX) May 12, 2016
Materials researchers at North Carolina State University have developed a new technique to deposit diamond on the surface of cubic boron nitride (c-BN), integrating the two materials into a single crystalline structure. "This could be used to create high-power devices, such as the solid state transformers needed to create the next generation 'smart' power grid," says Jay Narayan, the John ... read more


ENERGY TECH
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

ENERGY TECH
Flying observatory detects atomic oxygen in Martian atmosphere

Beyond Ikea: Swedish Gadget to Harvest Water on Martian Surface

Clues about Volcanoes Under Ice on Ancient Mars

Second ExoMars mission moves to next launch opportunity in 2020

ENERGY TECH
No more space race for US, rivalry gives way to collaboration

NASA Awards Contract for Aeronautics, Exploration Modeling, Simulation

Michael Watkins Named Next JPL Director

US to move more assets into deep space over next 4 years

ENERGY TECH
Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

ENERGY TECH
NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

Tim Peake goes roving

Russia delays space crew's return to Earth

ENERGY TECH
SpaceX successfully lands rockets first stage after space launch

SpaceX lands rocket's first stage after space launch

Agreement Signed for Airbus Safran Launchers

SpaceX to launch Japanese satellite early Friday

ENERGY TECH
Scientists discover potentially habitable planets

MIT compiles list of potential gases to guide search for life on exoplanets

Three potentially habitable worlds found around nearby ultracool dwarf star

Light Echoes Give Clues to Protoplanetary Disk

ENERGY TECH
Design tool enables novices to create bendable input devices for computers

Molybdenum disulfide holds promise for light absorption

Accelerating complex computer simulations: thinking beyond ones and zeros

Machine learning accelerates the discovery of new materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.