. 24/7 Space News .
CHIP TECH
Enabling 'internet of photonic things' with miniature sensors
by Staff Writers
Saint Louis MO (SPX) Sep 13, 2018

illustration only

A team of researchers at Washington University in St. Louis is the first to successfully record environmental data using a wireless photonic sensor resonator with a whispering-gallery-mode (WGM) architecture.

The photonic sensors recorded data during the spring of 2017 under two scenarios: one was a real-time measurement of air temperature over 12 hours, and the other was an aerial mapping of temperature distribution with a sensor mounted on a drone in a St. Louis city park. Both measurements were accompanied by a commercial thermometer with a Bluetooth connection for comparison purposes. The data from the two compared very favorably.

In the grand world of the "internet of things" (IoT), there are vast numbers of spatially distributed wireless sensors predominately based on electronics. These devices often are hampered by electromagnetic interference, such as disturbed audio or visual signals caused by a low-flying airplane and a kitchen grinder causing unwanted noise on a radio.

But optical sensors are "immune to electromagnetical interference and can provide a significant advantage in harsh environments," said Lan Yang, the Edwin H. and Florence G. Skinner Professor of Electrical and Systems Engineering in the School of Engineering and Applied Science, who led the study from which the findings were published Sept. 5 in Light: Science and Applications.

"Optical sensors based on resonators show small footprints, extreme sensitivity and a number of functionalities, all of which lend capability and flexibility to wireless sensors," Yang said. "Our work could pave the way to large-scale application of WGM sensors throughout the internet."

Yang's sensor belongs to a category called whispering gallery mode resonators, so named because they work like the famous whispering gallery in St. Paul's Cathedral in London, where someone on the one side of the dome can hear a message spoken to the wall by someone on the other side. Unlike the dome, which has resonances or sweet spots in the audible range, the sensor resonates at light frequencies and also at vibrational or mechanical frequencies, as Yang and her collaborators recently showed.

"In contrast to existing table-sized lab equipment, the mainboard of the WGM sensor is a mere 127 millimeters by 67 millimeters - roughly 5 inches by 2.5 inches - and integrates the entire architecture of the sensor system," said Xiangyi Xu, the paper's first author and a graduate student in Yang's lab.

"The sensor itself is made of glass and is the size of just one human hair; it is connected to the mainboard by a single optical fiber. A laser light is used to probe a WGM sensor. Light coupled out of the sensor is sent to a photodetector with a transmission amplifier. A processor controls peripherals such as the laser current drive, monitoring circuit, thermo-electric cooler and Wi-Fi unit," Xu said.

In her WGM, light propagates along the circular rim of a structure by constant internal reflection. Inside the circular rim, light rotates 1 million times. Over that space, light waves detect environmental changes, such as temperature and humidity, for example. The sensor node is monitored by a customized operating systems app that controls the remote system and collects and analyzes sensing signals.

Wireless sensors, whether electronic or photonic (light-based), can monitor such environmental factors as humidity, temperature and air pressure. Applications for wireless sensors encompass environmental and health-care monitoring, precision agricultural practices and smart cities' data-gathering, among other possibilities.

Smart cities are connected cities driven by internet data-harvesting. Precision agriculture uses digitized geographic information systems for precision agricultural practices such as soil mapping, which enables precise fertilizer and chemical applications and choice of seed selection for more efficient and profitable farming.

Yang and her colleagues had to address stability issues, which were handled by the customized operation systems app they developed, and miniaturization of bulky laboratory measurement systems.

"We developed a smartphone app to control the sensing system over WiFi," Yang said. "By connecting the sensor system to the internet, we can realize real-time remote control of the system."

In June 2017, Yang and her group mounted the whole system on the outside wall of a building and accumulated a plot of the frequency shift of the resonance. They compared their data with the commercial thermometer.

"Thanks to their small size, the capability and flexibility of wireless photonic sensors can be improved by making them mobile," Yang said.

The researchers also mounted their system on an unmanned drone in May 2017 alongside the commercial thermometer. When the drone flew from one measurement location to others, the resonance frequency of the WGM shifted in response to temperature variations.

"The measurements matched well with results from the commercial thermometer," she said. "The successful demonstrations show the potential applications of our wireless WGM sensor in the IoT. There are numerous promising sensing applications possible with WGM technology, including magnetic, acoustic, environmental and medical sensing."

The miniaturization of resonator sensing systems represents an exciting opportunity for IoT, as it will enable IoT to exploit a new class of photonic sensors with unprecedented sensitivity and capabilities," said Chenyang Lu, the Fullgraf Professor in the Department of Computer Science and Engineering and a co-author of the paper.

Research paper


Related Links
Washington University in St. Louis
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Graphene enables clock rates in the terahertz range
Dresden, Germany (SPX) Sep 11, 2018
Graphene - an ultrathin material consisting of a single layer of interlinked carbon atoms - is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today's silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that grap ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Champagne in space: Zero-G bottle lets tourists drink bubbly

5 Hazards of Human Spaceflight

Cosmonaut shows space station hole to calm public

Russian Cosmonauts Asked to Look For Proof to Unravel Soyuz Hole Origin

CHIP TECH
Tesla tumbles on new executive departures, Musk interview

Supply of Russian rocket engines to China will benefit ties

Soyuz-2.1a Rocket's Launch Might Be Rescheduled for 2019

NASA tests engine part to reduce costs

CHIP TECH
A new listening plan for Mars Opportunity rover

Curiosity Surveys a Mystery Under Dusty Skies

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

CHIP TECH
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

CHIP TECH
Iridium and Rolls-Royce Marine to expand the reach and capabilities of autonomous vessels

Creating Dynamism in Indian Space Ecosystem

Making space exploration real on Earth

Telesat advanced satellite begins on-orbit operations reports SSL

CHIP TECH
Detecting hydrogen using the extraordinary hall effect in cobalt-palladium thin films

Top 10 take-aways from New York Fashion Week

Diamond dust enables low-cost, high-efficiency magnetic field detection

Facebook to build $1 bn Singapore data centre, first in Asia

CHIP TECH
New Exoplanet Discovered by Team Led by Canadian Student

SwRI scientists find evidence for early planetary shake-up

A Direct-Imaging Mission to Study Earth-like Exoplanets

Youngest Accretion Disk Detected in Star Formation

CHIP TECH
New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.