. 24/7 Space News .
EARTH OBSERVATION
Earth's last magnetic field reversal took far longer than once thought
by Staff Writers
Madison WI (SPX) Aug 08, 2019

File visualization of Earth interior and the magnetic field lines due hydromagnetic convection.

Earth's magnetic field seems steady and true - reliable enough to navigate by.

Yet, largely hidden from daily life, the field drifts, waxes and wanes. The magnetic North Pole is currently careening toward Siberia, which recently forced the Global Positioning System that underlies modern navigation to update its software sooner than expected to account for the shift.

And every several hundred thousand years or so, the magnetic field dramatically shifts and reverses its polarity: Magnetic north shifts to the geographic South Pole and, eventually, back again. This reversal has happened countless times over the Earth's history, but scientists have only a limited understanding of why the field reverses and how it happens.

New work from University of Wisconsin-Madison geologist Brad Singer and his colleagues finds that the most recent field reversal, some 770,000 years ago, took at least 22,000 years to complete. That's several times longer than previously thought, and the results further call into question controversial findings that some reversals could occur within a human lifetime.

The new analysis - based on advances in measurement capabilities and a global survey of lava flows, ocean sediments and Antarctic ice cores - provides a detailed look at a turbulent time for Earth's magnetic field. Over millennia, the field weakened, partially shifted, stabilized again and then finally reversed for good to the orientation we know today.

The results provide a clearer and more nuanced picture of reversals at a time when some scientists believe we may be experiencing the early stages of a reversal as the field weakens and moves. Other researchers dispute the notion of a present-day reversal, which would likely affect our heavily electronic world in unusual ways.

Singer published his work Aug. 7 in the journal Science Advances. He collaborated with researchers at Kumamoto University in Japan and the University of California, Santa Cruz.

"Reversals are generated in the deepest parts of the Earth's interior, but the effects manifest themselves all the way through the Earth and especially at the Earth's surface and in the atmosphere," explains Singer. "Unless you have a complete, accurate and high-resolution record of what a field reversal really is like at the surface of the Earth, it's difficult to even discuss what the mechanics of generating a reversal are."

Earth's magnetic field is produced by the planet's liquid iron outer core as it spins around the solid inner core. This dynamo action creates a field that is most stable going through roughly the geographic North and South poles, but the field shifts and weakens significantly during reversals.

As new rocks form - typically either as volcanic lava flows or sediments being deposited on the sea floor - they record the magnetic field at the time they were created. Geologists like Singer can survey this global record to piece together the history of magnetic fields going back millions of years. The record is clearest for the most recent reversal, named Matuyama-Brunhes after the researchers who first described reversals.

For the current analysis, Singer and his team focused on lava flows from Chile, Tahiti, Hawaii, the Caribbean and the Canary Islands. The team collected samples from these lava flows over several field seasons.

"Lava flows are ideal recorders of the magnetic field. They have a lot of iron-bearing minerals, and when they cool, they lock in the direction of the field," says Singer. "But it's a spotty record. No volcanoes are erupting continuously. So we're relying on careful field work to identify the right records."

The researchers combined magnetic readings and radioisotope dating of samples from seven lava flow sequences to recreate the magnetic field over a span of about 70,000 years centered on the Matuyama-Brunhes reversal. They relied on upgraded methods developed in Singer's WiscAr geochronology lab to more accurately date the lava flows by measuring the argon produced from radioactive decay of potassium in the rocks.

They found that the final reversal was quick by geological standards, less than 4,000 years. But it was preceded by an extended period of instability that included two excursions - temporary, partial reversals - stretching back another 18,000 years. That span is more than twice as long as suggested by recent proposals that all reversals wrap up within 9,000 years.

The lava flow data was corroborated by magnetic readings from the seafloor, which provides a more continuous but less precise source of data than lava rocks. The researchers also used Antarctic ice cores to track the deposition of beryllium, which is produced by cosmic radiation colliding with the atmosphere. When the magnetic field is reversing, it weakens and allows more radiation to strike the atmosphere, producing more beryllium.

Since humanity began recording the strength of the magnetic field, it has decreased in strength about five percent each century. As records like Singer's show, a weakening field seems to be a precursor to an eventual reversal, although it's far from clear that a reversal is imminent.

A reversing field might significantly affect navigation and satellite and terrestrial communication. But the current study suggests that society would have generations to adapt to a lengthy period of magnetic instability.

"I've been working on this problem for 25 years," says Singer, who stumbled into paleomagnetism when he realized the volcanoes he was studying served as a good record of Earth's magnetic fields. "And now we have a richer record and better-dated record of this last reversal than ever before."


Related Links
University of Wisconsin-Madison
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
NASA targets coastal ecosystems with new space sensor
Washington DC (SPX) Aug 05, 2019
NASA has selected a space-based instrument under its Earth Venture Instrument (EVI) portfolio that will make observations of coastal waters to help protect ecosystem sustainability, improve resource management, and enhance economic activity. The selected Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR) instrument, led by principal investigator Joseph Salisbury at the University of New Hampshire, Durham, will provide unique observations of ocean biology, chemistry, and ecology in t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Two weeks of science and beyond on ISS

Orion Service Module completes critical propulsion test

As iPhone sales sputter, Apple moves toward reinvention, again

Study identifies way to enhance the sustainability of manufactured soils

EARTH OBSERVATION
SpaceX launches Falcon 9 carrying Israel's AMOS-17 satellite

Pentagon working on 9 separate hypersonic missile projects to take on Russia, China

Little SLS launches in low speed wind tunnel

Paragon Space Development Corporation CELSIUS Technology NASA Tipping Point Contract Award

EARTH OBSERVATION
New finds for Mars rover, seven years after landing

Optometrists verify Mars 2020 rover's perfect vision

MEDLI2 installation on Mars 2020 aeroshell begins

World first as kits designed to extract metals from the Moon and Mars blast off for space station tests

EARTH OBSERVATION
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

EARTH OBSERVATION
Arianespace launches INTELSAT 39 and EDRS-C

Companies partner to offer a complete solution for space missions as a service

Space data relay system shows its speed

Next satellite in the European Data Relay System is fuelled

EARTH OBSERVATION
Millennium Space Systems to test orbital debris solutions with TriSept, Rocket Lab and Tethers Unlimited

How roads can help cool sizzling cities

Could Mexico cactus solve world's plastics problem?

Recovering color images from scattered light

EARTH OBSERVATION
Dead planets can 'broadcast' for up to a billion years

Hordes of Earth's toughest creatures may now be living on Moon

Pre-life building blocks spontaneously align in evolutionary experiment

Shining starlight on the search for life

EARTH OBSERVATION
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.