Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Drawing a line, with carbon nanotubes
by Anne Trafton for MIT News
Boston MA (SPX) Oct 10, 2012


illustration only

Carbon nanotubes offer a powerful new way to detect harmful gases in the environment. However, the methods typically used to build carbon nanotube sensors are hazardous and not suited for large-scale production.

A new fabrication method created by MIT chemists - as simple as drawing a line on a sheet of paper - may overcome that obstacle. MIT postdoc Katherine Mirica has designed a new type of pencil lead in which graphite is replaced with a compressed powder of carbon nanotubes. The lead, which can be used with a regular mechanical pencil, can inscribe sensors on any paper surface.

The sensor, described in the journal Angewandte Chemie, detects minute amounts of ammonia gas, an industrial hazard. Timothy Swager, the John D. MacArthur Professor of Chemistry and leader of the research team, says the sensors could be adapted to detect nearly any type of gas.

"The beauty of this is we can start doing all sorts of chemically specific functionalized materials," Swager says. "We think we can make sensors for almost anything that's volatile."

Other authors of the paper are graduate student Jonathan Weis and postdocs Jan Schnorr and Birgit Esser.

Pencil it in
Carbon nanotubes are sheets of carbon atoms rolled into cylinders that allow electrons to flow without hindrance. Such materials have been shown to be effective sensors for many gases, which bind to the nanotubes and impede electron flow. However, creating these sensors requires dissolving nanotubes in a solvent such as dichlorobenzene, using a process that can be hazardous and unreliable.

Swager and Mirica set out to create a solvent-free fabrication method based on paper. Inspired by pencils on her desk, Mirica had the idea to compress carbon nanotubes into a graphite-like material that could substitute for pencil lead.

To create sensors using their pencil, the researchers draw a line of carbon nanotubes on a sheet of paper imprinted with small electrodes made of gold. They then apply an electrical current and measure the current as it flows through the carbon nanotube strip, which acts as a resistor. If the current is altered, it means gas has bound to the carbon nanotubes. The researchers tested their device on several different types of paper, and found that the best response came with sensors drawn on smoother papers. They also found that the sensors give consistent results even when the marks aren't uniform.

Two major advantages of the technique are that it is inexpensive and the "pencil lead" is extremely stable, Swager says. "You can't imagine a more stable formulation. The molecules are immobilized," he says.

The new sensor could prove useful for a variety of applications, says Zhenan Bao, an associate professor of chemical engineering at Stanford University. "I can already think of many ways this technique can be extended to build carbon nanotube devices," says Bao, who was not part of the research team. "Compared to other typical techniques, such as spin coating, dip coating or inkjet printing, I am impressed with the good reproducibility of sensing response they were able to get."

Sensors for any gas
In this study, the researchers focused on pure carbon nanotubes, but they are now working on tailoring the sensors to detect a wide range of gases. Selectivity can be altered by adding metal atoms to the nanotube walls, or by wrapping polymers or other materials around the tubes.

One gas the researchers are particularly interested in is ethylene, which would be useful for monitoring the ripeness of fruit as it is shipped and stored. The team is also pursuing sensors for sulfur compounds, which might prove helpful for detecting natural gas leaks.

The research was funded by the Army Research Office through MIT's Institute for Soldier Nanotechnologies and a National Institutes of Health fellowship to Mirica.

.


Related Links
MIT
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Nano-hillocks: Of mountains and craters
Dresden, Germany (SPX) Oct 05, 2012
In the field of nanotechnology, electrically-charged particles are frequently used as tools for surface modification. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the TU Vienna were at last able to reconcile important issues concerning the effects of highly charged ions on surfaces. Ion beams have been used for some time now for surface modification as ions are capabl ... read more


NANO TECH
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

NANO TECH
Mars rover finds 'bright object'

NASA Mars Curiosity Rover Prepares to Study Martian Soil

Ice-clad beauty on the 'Silver Island' of Mars

The Hunt for Clay Minerals Continues

NANO TECH
Austrian eyes record jump from edge of space in US

Austrian's edge-of-space jump aborted due to winds

Deep Impact Spacecraft Completes Rocket Burn

Virgin Galactic Acquires Full Ownership of The Spaceship Company

NANO TECH
Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

NANO TECH
NASA and International Partners Approve Year Long ISS Stay

Year on ISS planned ahead of manned Mars mission

NASA Celebrates Milestone Liftoff

45th Space Wing Supports First SpaceX Launch for NASA's Commercial Resupply Services

NANO TECH
SpaceX On Course For Crew Resupply Cargo Delivery To Space Station

SpaceX craft on way to ISS in first supply run

Orbital Begins Antares Rocket Operations at Mid-Atlantic Regional Spaceport

H-IIB Launch Service Privatization

NANO TECH
Comet crystals found in a nearby planetary system

The Magnetic Wakes of Pulsar Planets

Stagnant Interiors Suppress Chances of Life on Super-Earths

Meteors Might Add Methane to Exoplanet Atmospheres

NANO TECH
'Dishonored' game a whorl of cunning and combat

US politics goes mobile, phones become tool: study

Immersive game showcases new Internet Explorer

Strathclyde takes the lead in space research




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement