Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Discovery could lead to end of sunburn pain
by Staff Writers
Durham NC (SPX) Aug 07, 2013


Wolfgang Liedtke of Duke was among the researchers to determine why sunburn occurs. Credit: Shawn Rocco.

The painful, red skin that comes from too much time in the sun is caused by a molecule abundant in the skin's epidermis, a new study shows.

Blocking this molecule, called TRPV4, greatly protects against the painful effects of sunburn. The results were published the week of Aug. 5 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition online. The research, which was conducted in mouse models and human skin samples, could yield a way to combat sunburn and possibly several other causes of pain.

"We have uncovered a novel explanation for why sunburn hurts," said Wolfgang Liedtke, M.D., Ph.D., one of the senior authors of the study and associate professor of neurology and neurobiology at Duke University School of Medicine. "If we understand sunburn better, we can understand pain better because what plagues my patients day in and day out is what temporarily affects otherwise healthy people who suffer from sunburn."

The vast majority of sunburns are caused by ultraviolet B or UVB radiation. In moderation, this component of sunlight does the body good, giving a daily dose of vitamin D and perhaps improving mood. But if people get too much, it can damage the DNA in their skin cells and increase their susceptibility to cancer. Sunburns are nature's way of telling people to go inside and avoid further damage.

Liedtke worked together with a multi-institutional team of researchers: Elaine Fuchs, Ph.D., a professor at Rockefeller University and an investigator with the Howard Hughes Medical Institute who is a widely renowned skin biologist; and Martin Steinhoff, M.D., Ph.D., professor of dermatology and surgery at the University of California in San Francisco who is well-known for his studies on sensory function of skin in health and disease.

Together, they investigated whether the TRPV4 molecule, which is abundant in skin cells and has been shown to be involved in other pain processes, might play a role in the pain and tissue damage caused by UVB over-exposure. TRPV4 is an ion channel, a gateway in the cell membrane that rapidly lets in positively charged ions such as calcium and sodium.

First, the researchers built a mouse model that was missing TRPV4 only in the cells of the epidermis, the outermost layer of the skin. They took these genetically engineered mice and their normal counterparts and exposed their hind paws -- which most resemble human skin -- to UVB rays. The hind paws of the normal mice became hypersensitive and blistered in response to the UVB exposure, while those of the mutant mice showed little sensitization and tissue injury.

Next, they used cultured mouse skin cells to dissect the activities of TRPV4. Using a device engineered by Nan Marie Jokerst, Ph.D., a professor of electrical and computer engineering at Duke's Pratt School of Engineering, the researchers showed that UVB caused calcium to flow into the skin cells, but only when the TRPV4 ion channel was present.

Further molecular analysis uncovered the entire sequence of events in this pathway, with each event affecting the next: UVB exposure activates TRPV4, which causes the influx of calcium ions, which brings in another molecule called endothelin, which triggers TRPV4 to send more calcium into the cells. Endothelin is known to cause pain in humans and also evokes itching, which could explain the urge sunburned patients feel to scratch their skin.

To test whether these findings in mice and mouse cells have human relevance, the researchers used human skin samples to successfully demonstrate increased activation of TRPV4 and endothelin in human epidermis after UVB exposure.

To see if they could block this novel pain pathway, the researchers used a pharmaceutical compound called GSK205 that selectively inhibits TRPV4. They dissolved this compound into a solution of alcohol and glycerol -- basically, skin disinfectant -- and then applied it to the hind paws of normal mice.

The researchers found that the mice treated with the compound were again largely resistant to the pain-inducing and skin-disrupting effects of sunburn. Similarly, when they administered the compound to mouse skin cells in culture, they found that it stopped the UV-triggered influx of calcium ions into the cells.

"The results position TRPV4 as a new target for preventing and treating sunburn, and probably chronic sun damage including skin cancer or skin photo-aging, though more work must be done before TRPV4 inhibitors can become part of the sun defense arsenal, perhaps in new kinds of skin cream, or to treat chronic sun damage," said Steinhoff, co-senior author of the study.

"I think we should be cautious because we want to see what inhibition of TRPV4 will do to other processes going on in the skin," Liedtke added. "Once these concerns will be addressed, we will need to adapt TRPV4 blockers to make them more suitable for topical application. I could imagine it being mixed with traditional sunblock to provide stronger protections against UVB exposure."

The research was supported by grants from the National Institutes of Health (DE018549, DE018549S1,DE018549S2, AR059402, AR31737, AR050452, and P41 EB015897), and the German Research Foundation (DFG; DFG STE 1014/2-2, DFG Ce165/1-1, DFG Ke1672/1-1). "UVB Radiation Generates Sunburn Pain and Affects Skin By Activating Epidermal TRPV4 and Triggering Endothelin-1 Signaling," Carlene Moore, Ferda Cevikbas, H. Amalia Pasolli, Yong Chen, Wei Kong, Cordula Kempkes, Puja Parekh, Suk Hee Lee, Nelly-Ange Kontchou, Iwei Ye, Nan Marie Jokerst, Elaine Fuchs, Martin Steinhoff, Wolfgang Liedtke. PNAS - PNAS-Plus, Aug. 5, 2013.

.


Related Links
Duke University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Thyroid cancer risk for 2,000 Fukushima workers: TEPCO
Tokyo, Tokyo Province (AFP) July 19, 2013
Around 2,000 people who have worked at Japan's wrecked Fukushima nuclear plant face a heightened risk of thyroid cancer, its operator said Friday. Tokyo Electric Power (TEPCO) said 1,973 people - around 10 percent of those employed in emergency crews involved in the clean-up since the meltdowns - were believed to have been exposed to enough radiation to cause potential problems. The fi ... read more


TECH SPACE
Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

First-ever lunar south pole mission could be attempted by 2016

TECH SPACE
Full Curiosity Traverse Passes One-Mile Mark

Curious craters on Mars said result of impacts into ancient ice

NASA Begins Launch Preparations for Next Mars Mission

NASA Curiosity Rover Approaches First Anniversary on Mars

TECH SPACE
Study: Teleportation would have a slight time-to-transmit problem

NASA technologist makes traveling to hard-to-reach destinations easier

First Liquid Hydrogen Tank Barrel Segment for SLS Core Completed

Tenth Parachute Test for NASA's Orion Adds 10,000 Feet of Success

TECH SPACE
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

TECH SPACE
NASA's Firestation on way to ISS

Weekly recap from the International Space Station expedition lead scientist

NSBRI Wants Ideas To Support Space Crew Health and Performance

NASA narrows list of possible culprits in spacesuit water leak

TECH SPACE
Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

SpaceX Awarded Launch Reservation Contract for Largest Canadian Space Program

TECH SPACE
New Explorer Mission Chooses the 'Just-Right' Orbit

'Blinking' stellar system may yield clues to planet formation

Pulsating star sheds light on exoplanet

Chandra Sees Eclipsing Planet in X-rays for First Time

TECH SPACE
Discovery could lead to end of sunburn pain

Alphasat deploys its giant reflector in orbit

Largest neuronal network simulation achieved using K computer

Mission Criticality of Space Mechanisms - Part 1




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement