. 24/7 Space News .
CHIP TECH
Diamond-based circuits can take the heat for advanced applications
by Staff Writers
Washington DC (SPX) Apr 12, 2018

The view of the H-diamond MOSFET NOR logic circuit from above (left), and the operation of the NOR logic circuits, showing that the circuit only produces voltage when both inputs are at zero.

When power generators like windmills and solar panels transfer electricity to homes, businesses and the power grid, they lose almost 10 percent of the generated power. To address this problem, scientists are researching new diamond semiconductor circuits to make power conversion systems more efficient.

A team of researchers from Japan successfully fabricated a key circuit in power conversion systems using hydrogenated diamond (H-diamond.) Furthermore, they demonstrated that it functions at temperatures as high as 300 degrees Celsius.

These circuits can be used in diamond-based electronic devices that are smaller, lighter and more efficient than silicon-based devices. The researchers report their findings this week in Applied Physics Letters, from AIP Publishing.

Silicon's material properties make it a poor choice for circuits in high-power, high-temperature and high-frequency electronic devices. "For the high-power generators, diamond is more suitable for fabricating power conversion systems with a small size and low power loss," said Jiangwei Liu, a researcher at Japan's National Institute for Materials Science and a co-author on the paper.

In the current study, researchers tested an H-diamond NOR logic circuit's stability at high temperatures. This type of circuit, used in computers, gives an output only when both inputs are zero.

The circuit consisted of two metal-oxide-semiconductor field-effect transistors (MOSFETs), which are used in many electronic devices, and in digital integrated circuits, like microprocessors. In 2013, Liu and his colleagues were the first to report fabricating an E-mode H-diamond MOSFET.

When the researchers heated the circuit to 300 degrees Celsius, it functioned correctly, but failed at 400 degrees. They suspect that the higher temperature caused the MOSFETs to breakdown.

Higher temperatures may be achievable however, as another group reported successful operation of a similar H-diamond MOSFET at 400 degrees Celsius. For comparison, the maximum operation temperature for silicon-based electronic devices is about 150 degrees.

In the future, the researchers plan to improve the circuit's stability at high temperatures by altering the oxide insulators and modifying the fabrication process. They hope to construct H-diamond MOSFET logic circuits that can operate above 500 degrees Celsius and at 2.0 kilovolts.

"Diamond is one of the candidate semiconductor materials for next-generation electronics, specifically for improving energy savings," said Yasuo Koide, a director at the National Institute for Materials Science and co-author on the paper.

"Of course, in order to achieve industrialization, it is essential to develop inch-sized single-crystal diamond wafers and other diamond-based integrated circuits."

Research Report: "Annealing effects on hydrogenated diamond NOR logic circuits"


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Mini toolkit for measurements: New NIST chip hints at quantum sensors of the future
Washington DC (SPX) Apr 11, 2018
Researchers at the National Institute of Standards and Technology (NIST) have created a chip on which laser light interacts with a tiny cloud of atoms to serve as a miniature toolkit for measuring important quantities such as length with quantum precision. The design could be mass-produced with existing technology. As described in Optica, NIST's prototype chip was used to generate infrared light at a wavelength of 780 nanometers, precisely enough to be used as a length reference for calibrating ot ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
'Ideas' conference to grapple with dark side of tech

Virgin Galactic completes first rocket-powered Unity space craft launch

Cargo-packed Dragon arrives at space station

SpaceX Dragon arrives at ISS with material samples and new testing facility

CHIP TECH
Rocket Lab 'Its Business Time' launch window to open 20 April 2018 NZT

Student Launch Teams Rendezvous in Huntsville for NASA Competition

New research payloads heading to ISS on SpaceX Resupply Mission

SpaceX launches cargo to space station using recycled rocket, spaceship

CHIP TECH
NASA's Idea to Send Swarm of Robots to Mars

Opportunity Completes In-Situ Work on 'Aguas Calientes'

"Bungee Jumping": Russian Scientists Suggest Using Ropes to Ship Cargo From Mars

NASA Ready to Study Heart of Mars

CHIP TECH
China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Earth-bound Chinese spacelab plunging to fiery end

CHIP TECH
Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Relativity Space raises 35M in Series B funding

CHIP TECH
Thin engineered material perfectly redirects and reflects sound

New 4-D printer could reshape the world we live in

Space Maid: Robot Harpoon and Net System to Attempt Space Cleanup

Researchers develop nanoparticle films for high-density data storage

CHIP TECH
Planet hunter TESS will also help astronomers study stars

UA-led NASA survey seen as steppingstone for astronomy

It's givin' me excitations: U-M study uncovers first steps of photosynthesis

X-rays could sterilise alien planets in otherwise habitable zones

CHIP TECH
SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.