. 24/7 Space News .
ENERGY TECH
Developing new materials for the fusion reactor
by Staff Writers
Tokyo, Japan (SPX) Dec 12, 2018

The blanket is colored in orange, and the combined weight of the reactor exceeds 1,000 tons. The blanket collects the high-speed particles that have emerged from the plasma in the fusion reaction and converts that kinetic energy into heat.

In the future fusion reactor, plasma is confined by using the magnetic field inside the doughnut-shaped vacuum vessel. The blanket is in a location where it almost touches the plasma, and as if to enfold the plasma the blanket is placed on the inner surface of the vacuum chamber.

The blanket, by absorbing the high-speed particles generated by the fusion reaction inside the plasma, releases heat and a higher temperature is achieved. Then, cooling materials are passed through piping in the blanket, and heat is taken out to outside.

Using that heat, hot water is heated and produces steam to power the steam turbine. At this time, the blanket is expected to be at the high temperature of between 700 and 800 degrees?.

For this reason, in order to achieve long-duration and stable electricity generation it is necessary to newly develop material that is strong at high temperatures, and use that material in manufacturing the blanket.

As new material for producing the blanket, there are prospects for using vanadium, which is atomic number 23, as the principal component of the alloy. This alloy is composed of 92% vanadium, 4% chromium, and 4% titanium.

The vanadium alloy, compared to the heat-resistant steel which is commonly used, combines various characteristics that are necessary for the fusion reactor blanket, such as high strength at high temperatures.

To date, as a candidate material for the fusion reactor, development of the vanadium alloy is being conducted in the United States and other countries. Among earlier alloys, there were problems of breakage during machining for pipes and easy breakage after welding of pipe-fitting connections.

In actuality, it was necessary to overcome this problem in order to construct a large structure similar to the fusion reactor using the vanadium alloy.

Causes of breakage of vanadium alloy during the machining of and after the welding are impurities such as carbon, nitrogen, oxygen, and others which are mixed with air and raw materials. Thus, at National Institute for Fusion Science (NIFS), by reviewing the manufacturing conditions and selecting the appropriate condition, we were able to remove impurities from raw materials.

Moreover, in order to avoid the mixing of impurities from the air, we produced an alloy in vacuum or in inert gases (gas that does not have a chemical reaction). As a result, we successfully developed a high purity vanadium alloy NIFS-HEAT-2.

Due to this high degree of purity, ductility (property that prevents breakage by extending under tension) was improved substantially and we were able to overcome the problem of breakage at the time of machining and after welding.

Conversely, in general, the high purity of metals invites the weakening of their strength. And even NIFS-HEAT-2, too, shared the same worry. However, we were able to confirm to maintain sufficient strength under the conditions envisioned for the fusion reactor blanket in the following strength test.

In the strength test, in order to simulate the conditions of the fusion reactor, we heat the material to the high temperature of 800 degrees? and set a fixed load. The materials gradually extend and change shape, and eventually break.

As a result of measuring time to breaking off, under a load of below 1,000 atmospheric pressure (stress equivalent to a weight of 10.3 kilograms per millimeter squared) envisioned in the fusion reactor's blanket, the time until it breaks off does not change even for high purification. Thus, we learned that the strength can be maintained.

As explained above, by purifying the vanadium alloy we clarified that it is possible to make the alloy strong against breaking up under machining and welding, and at the same time the strength can be maintained even at high temperatures. From this, we have shown for the first time in the world the possibility of producing a blanket that may operate at high temperatures for a long period of time.

This research result was presented at the 27th IAEA Fusion Energy Conference held in Ahmedabad, India, October 22-27, 2018


Related Links
National Institutes of Natural Sciences
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
A step closer to fusion energy
Swansea UK (SPX) Dec 04, 2018
Harnessing nuclear fusion, which powers the sun and stars, to help meet earth's energy needs, is a step closer after researchers showed that using two types of imaging can help them assess the safety and reliability of parts used in a fusion energy device. Scientists from Swansea University, Culham Centre for Fusion Energy, ITER in France, and the Max-Planck Institute of Plasma Physics in Germany paired x-ray and neutron imaging to test the robustness of parts. They found that both methods y ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Four NASA-sponsored experiments set to launch on Virgin Galactic spacecraft

NASA's Voyager 2 Probe Enters Interstellar Space

Virgin Galactic's new flight test to soar closer to edge of space

We're all ears as Voyager 2 goes Interstellar

ENERGY TECH
NASA Sounding Rockets Carry TRICE-2 over Norwegian Sea

Roscosmos to submit super-heavy rocket project to Government

Dragon attached to Station, returns to Earth in January

China puts 2 Saudi satellites into orbit

ENERGY TECH
NASA's InSight takes its first selfie

InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

ENERGY TECH
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

ENERGY TECH
CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

ENERGY TECH
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Supercomputers without waste heat

Multifunctional dream ceramic matrix composites are born

ENERGY TECH
The epoch of planet formation, times twenty

Helium exoplanet inflated like a balloon, research shows

Common ground discovered in planet-forming disks

UNLV study unlocks clues to how planets form

ENERGY TECH
Record Setting Course-Correction Puts New Horizons on Track to Kuiper Belt Flyby

NASA's Juno mission halfway to Jupiter science

Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.