. | . |
Dellingr CubeSat technologies available for commercial licensing by Staff Writers Greenbelt MD (SPX) Nov 29, 2017
Two technologies flying on Dellingr, the one-of-a-kind 6U CubeSat designed and built at NASA's Goddard Space Flight Center in Greenbelt, Maryland, are available for licensing. "We are always looking for potential partners and licensees for our technologies," said Goddard Strategic Partnerships Office Senior Technology Manager Enidia Santiago-Arce, "It's very important to NASA to facilitate licensing of our technologies when possible for the benefit of the broader community." Deployed from NASA's International Space Station on Nov. 20, 2017, Dellingr specifically was designed to demonstrate a more robust and less costly platform for carrying out space science missions. It carries three heliophysics-related instruments as well as innovative components and subsystems that aid in Dellingr's operations. The two technologies now available for licensing through Goddard's Strategic Partnerships Office (SPO) are described below: + GSC-16900-1: Miniature Release Mechanism or Diminutive Assembly for Nanosatellite deploYables (DANY) + GSC-17034-1: CubeSat Form Factor Thermal Control Louvers
earlier report Scientists and engineers at NASA's Goddard Space Flight Center in Greenbelt, Maryland, built all the instruments, primarily with research-and-development program funding.
Ion-Neutral Mass Spectrometer The team initially flew the instrument on a previous CubeSat mission. Although the instrument gathered "beautiful" ion-composition counts of hydrogen, helium, and oxygen, the CubeSat bus proved unreliable and the mission was aborted six months after launch, Paschalidis said. "The immediate plan with Dellingr is to extensively prove the instrument's functionality. Assuming all goes well, we want to collect as much data as possible, calibrate for spacecraft attitude and location, analyze the data, and plot ion and neutral composition and densities as a function of orbit. This by itself is a unique data set," Paschalidis added.
Boom and No-Boom Magnetometer Systems Included in this observing technique is one thumbnail-sized magnetometer positioned at the end of a deployable boom and a couple sensors positioned inside Dellingr. The purpose of the internal sensors is measuring the magnetic fields, or "noise," generated by the spacecraft's torquers, solar panels, motors, and other hardware. Sophisticated algorithms that Zesta's team created then will analyze the external and internal magnetometer data to subtract spacecraft-generated noise from the actual science data. "CubeSats, like any spacecraft, will be noisy; they are magnetically unclean," Zesta explained, adding that to avoid the problem in more traditional spacecraft, the magnetometer is placed at the end of a long boom. "Even with a one-meter (three foot) boom - unless there is a magnetic cleanliness program - you will need to use algorithms to get rid of bus noise. Algorithms are the only way to get scientific value from your data." In comparison, the Dellingr the boom is only about 22-inches long and it is not magnetically clean, Zesta said. "We absolutely needed to develop noise-cancellation algorithms if we wanted to get any useful science data."
The Diminutive DANY It operates much like a car-door latch. Affixed to the exterior of Dellingr, it holds the boom and antenna in place during launch and then, upon command, applies a current that activates a heating element, which weakens a plastic device holding the retaining pins. Once Dellingr reaches its intended obit, the satellite activates the heating element and the deployables will swing open to begin operations.
Goddard Fine Sun Sensor
Thermal-Control Technology The device consists of front and back plates, flaps, and springs. The back plate is painted with a white, highly emissive paint and the front plate and flaps are made of aluminum, which aren't as emissive. The bimetallic springs do all the work. They are made of two different types of metal. Attached to the highly emissive back plate, the springs uncurl if one of the metals gets too hot, forcing the flaps to open. When the spring cools down, it reverts to its original shape and the flaps close. For the Dellingr demonstration, Evans is flying just one flap/spring combination to help mature the technology in preparation for future missions where the miniature thermal louvers would be an integrated part of the thermal design. "A mission with a temperature-sensitive instrument or a component that sheds significant amounts of heat only occasionally would be a good candidate for this technology," she said.
Houston, TX (SPX) Nov 27, 2017 Early this morning, NanoRacks successfully completed the Company's 13th CubeSat deployment mission from the International Space Station. As these five CubeSats enter low-Earth orbit, this brings NanoRacks to 176 total CubeSats deployed into space via the NanoRacks CubeSat Deployer (NRCSD). In total, the Company has deployed 193 satellites into space. Additionally, NanoRacks is pleased to s ... read more Related Links Dellingr and other Goddard Technology Partnerships Microsat News and Nanosat News at SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |