. 24/7 Space News .
CHIP TECH
Defects promise quantum communication through standard optical fiber
by Staff Writers
Groningen, Netherlands (SPX) Oct 04, 2018

Illustration of optical polarization of defect spin in silicon carbide

An international team of scientists led by the University of Groningen's Zernike Institute for Advanced Materials has identified a way to create quantum bits that emit photons that describe their state at wavelengths close to those used by telecom providers.

These qubits are based on silicon carbide in which molybdenum impurities create color centers. The results were published in the journal npj Quantum Information on 1 October.

By using phenomena like superposition and entanglement, quantum computing and quantum communication promise superior computing powers and unbreakable cryptography. Several successes in transmitting these quantum phenomena through optical fibers have been reported, but this is typically at wavelengths that are incompatible with the standard fibers currently used in worldwide data transmission.

Defects
Physicists from the University of Groningen in the Netherlands together with colleagues from Linkoping University and semiconductor company Norstel AB, both in Sweden, have now published the construction of a qubit that transmits information on its status at a wavelength of 1,100 nanometers. Furthermore, the mechanism involved can likely be tuned to wavelengths near those used in data transmission (around 1,300 or 1,500 nanometers).

The work started with defects in silicon carbon crystals, explains PhD student Tom Bosma, first author of the paper. 'Silicon carbide is a semiconductor, and much work has been done to prevent impurities that affect the properties of the crystals.

As a result, there is a huge library of impurities and their impact on the crystal.' But these impurities are exactly what Bosma and his colleagues need: they can form what are known as color centers, and these respond to light of specific wavelengths.

Superposition
When lasers are used to shine light at the right energy onto these color centers, electrons in the outer shell of the molybdenum atoms in the silicon carbide crystals are kicked to a higher energy level. When they return to the ground state, they emit their excess energy as a photon. 'For molybdenum impurities, these will be infrared photons, with wavelengths near the ones used in data communication', explains Bosma.

This material was the starting point for constructing qubits, says fellow PhD student Carmem Gilardoni, who did a lot of the theoretical work in the paper. 'We used a technique called coherent population trapping to create superposition in the color centers.'

This involved using a property of electrons called spin, a quantum mechanical phenomenon that gives the electrons a magnetic moment which can point up or down. This creates a qubit in which the spin states represent 0 or 1.

Quantum internet
Gilardoni: 'If you apply a magnetic field, the spins align either parallel or anti-parallel to the magnetic field. The interesting thing is that as a result the ground state for electrons with spin up or spin down is slightly different.'

When laser light is used to excite the electrons, they subsequently fall back to one of the two ground states. The team, led by Professor in Physics of Quantum Devices Caspar van der Wal, used two lasers, each tuned to move electrons from one of the ground states to the same level of excitation, to create a situation in which a superposition of both spin states evolved in the color center.

Bosma: 'After some fine tuning, we managed to produce a qubit in which we had a long-lasting superposition combined with fast switching.' Furthermore, the qubit emitted photons with information on the quantum state at infrared wavelengths.

Given the large library of impurities that can create color centers in the silicon carbide crystals, the team is confident they can bring this wavelength up to the levels used in standard optical fibers. If they can manage this and produce an even more stable (and thus longer-lasting) superposition, the quantum internet will be a whole lot closer to becoming reality.

Research Report: "Identification and tunable optical coherent control of transition-metal spins in silicon carbide."


Related Links
University of Groningen
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
A new way to count qubits
Syracuse NY (SPX) Sep 28, 2018
Researchers at Syracuse University, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer. Their findings are the subject of an article in Science magazine (American Association for the Advancement of Science, 2018), which elaborates on the experimental efforts involved with creating such a technique. The Plourde Group- led by Britton Plourde, professor of physics in Syr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Space Station Crew Returns to Earth, Lands Safely in Kazakhstan

Russian scientists develop high-precision laser for satellite navigation

First UAE Astronaut to Fly to ISS for 11-Day Mission on April 5, 2019

NASA skeptical on sabotage theory after mystery ISS leak

CHIP TECH
Nucleus completes successful first launch

SpaceX uses dumping to drive Russia out of space launch market claims Roscosmos

A decade of commercial space travel - what's next?

Jeff Bezos space project lands big rocket partnership

CHIP TECH
Curiosity Rover to Temporarily Switch 'Brains'

Opportunity Remains Silent For Over Three Months

Software finds the best way to stick a Mars landing

UCF selling experimental Martian dirt - $20 a kilogram, plus shipping

CHIP TECH
China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

CHIP TECH
Britain and Australia enter into space agreement

See the future at ESA's IAC Start-up Space Zone

Ten years catching rocket signals

Thinkom develops enterprise user terminal for Telesat's LEO constellation

CHIP TECH
Researchers discover highly active organic photocatalyst

NTU Singapore scientists develop smart technology for synchronized 3D printing of concrete

Brazil says Norsk Hydro lacked waste license for stalled plant

Norsk Hydro halts output at key Brazil plant, share plunges

CHIP TECH
Liquid crystals and the origin of life

Astronomers find first evidence of possible moon outside our Solar System

'Spacesuits' protect microbes destined to live in space

New tool helps scientists better target the search for alien life

CHIP TECH
While seeking Planet X, astronomers find a distant solar system object

Extremely distant Solar System object found

New Horizons Team Rehearses For New Year's Flyby

Juno image showcases Jupiter's brown barge









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.