. 24/7 Space News .
OUTER PLANETS
Deep inside the Great Red Spot hints at water on Jupiter
by Lonnie Shekhtman for GSFC News
Greenbelt MD (SPX) Aug 30, 2018

This animation takes the viewer on a simulated flight into, and then out of, Jupiter's upper atmosphere at the location of the Great Red Spot. It was created by combining an image from the JunoCam imager on NASA's Juno spacecraft with a computer-generated animation. The perspective begins about 2,000 miles (3,000 kilometers) above the cloud tops of the planet's southern hemisphere. The bar at far left indicates altitude during the quick descent; a second gauge next to that depicts the dramatic increase in temperature that occurs as the perspective dives deeper down. The clouds turn crimson as the perspective passes through the Great Red Spot. Finally, the view ascends out of the spot. See animation here

For centuries, scientists have worked to understand the makeup of Jupiter. It's no wonder: this mysterious planet is the biggest one in our solar system by far, and chemically, the closest relative to the Sun. Understanding Jupiter is key to learning more about how our solar system formed, and even about how other solar systems develop.

But one critical question has bedeviled astronomers for generations: Is there water deep in Jupiter's atmosphere, and if so, how much?

Gordon L. Bjoraker, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, reported in a recent paper in the Astronomical Journal that he and his team have brought the Jovian research community closer to the answer.

By looking from ground-based telescopes at wavelengths sensitive to thermal radiation leaking from the depths of Jupiter's persistent storm, the Great Red Spot, they detected the chemical signatures of water above the planet's deepest clouds. The pressure of the water, the researchers concluded, combined with their measurements of another oxygen-bearing gas, carbon monoxide, imply that Jupiter has 2 to 9 times more oxygen than the Sun. This finding supports theoretical and computer-simulation models that have predicted abundant water (H2O) on Jupiter made of oxygen (O) tied up with molecular hydrogen (H2).

The revelation was stirring given that the team's experiment could have easily failed. The Great Red Spot is full of dense clouds, which makes it hard for electromagnetic energy to escape and teach astronomers anything about the chemistry within.

"It turns out they're not so thick that they block our ability to see deeply," said Bjoraker. "That's been a pleasant surprise."

New spectroscopic technology and sheer curiosity gave the team a boost in peering deep inside Jupiter, which has an atmosphere thousands of miles deep, Bjoraker said: "We thought, well, let's just see what's out there."

The data Bjoraker and his team collected will supplement the information NASA's Juno spacecraft is gathering as it circles the planet from north to south once every 53 days.

Among other things, Juno is looking for water with its own infrared spectrometer and with a microwave radiometer that can probe deeper than anyone has seen - to 100 bars, or 100 times the atmospheric pressure at Earth's surface. (Altitude on Jupiter is measured in bars, which represent atmospheric pressure, since the planet does not have a surface, like Earth, from which to measure elevation.)

If Juno returns similar water findings, thereby backing Bjoraker's ground-based technique, it could open a new window into solving the water problem, said Goddard's Amy Simon, a planetary atmospheres expert.

"If it works, then maybe we can apply it elsewhere, like Saturn, Uranus or Neptune, where we don't have a Juno," she said.

Juno is the latest spacecraft tasked with finding water, likely in gas form, on this giant gaseous planet.

Water is a significant and abundant molecule in our solar system. It spawned life on Earth and now lubricates many of its most essential processes, including weather. It's a critical factor in Jupiter's turbulent weather, too, and in determining whether the planet has a core made of rock and ice.

Jupiter is thought to be the first planet to have formed by siphoning the elements left over from the formation of the Sun as our star coalesced from an amorphous nebula into the fiery ball of gases we see today. A widely accepted theory until several decades ago was that Jupiter was identical in composition to the Sun; a ball of hydrogen with a hint of helium - all gas, no core.

But evidence is mounting that Jupiter has a core, possibly 10 times Earth's mass. Spacecraft that previously visited the planet found chemical evidence that it formed a core of rock and water ice before it mixed with gases from the solar nebula to make its atmosphere. The way Jupiter's gravity tugs on Juno also supports this theory. There's even lightning and thunder on the planet, phenomena fueled by moisture.

"The moons that orbit Jupiter are mostly water ice, so the whole neighborhood has plenty of water," said Bjoraker. "Why wouldn't the planet - which is this huge gravity well, where everything falls into it - be water rich, too?"

The water question has stumped planetary scientists; virtually every time evidence of H2O materializes, something happens to put them off the scent. A favorite example among Jupiter experts is NASA's Galileo spacecraft, which dropped a probe into the atmosphere in 1995 that wound up in an unusually dry region. "It's like sending a probe to Earth, landing in the Mojave Desert, and concluding the Earth is dry," pointed out Bjoraker.

In their search for water, Bjoraker and his team used radiation data collected from the summit of Maunakea in Hawaii in 2017. They relied on the most sensitive infrared telescope on Earth at the W.M. Keck Observatory, and also on a new instrument that can detect a wider range of gases at the NASA Infrared Telescope Facility.

The idea was to analyze the light energy emitted through Jupiter's clouds in order to identify the altitudes of its cloud layers. This would help the scientists determine temperature and other conditions that influence the types of gases that can survive in those regions.

Planetary atmosphere experts expect that there are three cloud layers on Jupiter: a lower layer made of water ice and liquid water, a middle one made of ammonia and sulfur, and an upper layer made of ammonia.

To confirm this through ground-based observations, Bjoraker's team looked at wavelengths in the infrared range of light where most gases don't absorb heat, allowing chemical signatures to leak out. Specifically, they analyzed the absorption patterns of a form of methane gas. Because Jupiter is too warm for methane to freeze, its abundance should not change from one place to another on the planet.

"If you see that the strength of methane lines vary from inside to outside of the Great Red Spot, it's not because there's more methane here than there," said Bjoraker, "it's because there are thicker, deep clouds that are blocking the radiation in the Great Red Spot."

Bjoraker's team found evidence for the three cloud layers in the Great Red Spot, supporting earlier models. The deepest cloud layer is at 5 bars, the team concluded, right where the temperature reaches the freezing point for water, said Bjoraker, "so I say that we very likely found a water cloud." The location of the water cloud, plus the amount of carbon monoxide that the researchers identified on Jupiter, confirms that Jupiter is rich in oxygen and, thus, water.

Bjoraker's technique now needs to be tested on other parts of Jupiter to get a full picture of global water abundance, and his data squared with Juno's findings.

"Jupiter's water abundance will tell us a lot about how the giant planet formed, but only if we can figure out how much water there is in the entire planet," said Steven M. Levin, a Juno project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California.


Related Links
Juno at NASA
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Jupiter had growth disorders
Zurich, Switzerland (SPX) Aug 29, 2018
With an equator diameter of around 143,000 kilometers, Jupiter is the largest planet in the solar system and has 300 times the mass of the Earth. The formation mechanism of giant planets like Jupiter has been a hotly debated topic for several decades. Now, astrophysicists of the Swiss National Centre of Competence in Research (NCCR) PlanetS of the Universities of Bern and Zurich and ETH Zurich have joined forces to explain previous puzzles about how Jupiter was formed and new measurements. The research ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
For first time in decades, astronaut quits NASA training

Students experience the power of controlling satellites in space

Russia's Kalashnikov branches out from rifles to robots and e-cars

Heat shield install brings Orion spacecraft closer to space

OUTER PLANETS
Space launch training cooperation

Commercial Spaceports 2018

Chinese private space company to launch first carrier rocket

GEOStar-3 mission success enabled by Aerojet Rocketdyne XR-5 Hall Thruster System

OUTER PLANETS
NASA's InSight passes halfway to Mars, instruments check in

Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

OUTER PLANETS
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

OUTER PLANETS
Artwork unveiled on exoplanet satellite

Successful capital raising sees Kleos Space Launch on the ASX

Three top Russian space industry execs held for 'fraud'

ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

OUTER PLANETS
Researchers discover link between magnetic field strength and temperature

Actuation gives new dimensions to an old material

Texan begins selling 3D gun plans despite judge's order

A materials scientist's dream come true

OUTER PLANETS
Infant exoplanet weighed by Hipparcos and Gaia

Infant exoplanet weighed by Hipparcos and Gaia

Discovery of a structurally 'inside-out' planetary nebula

Under pressure, hydrogen offers a reflection of giant planet interiors

OUTER PLANETS
Jupiter had growth disorders

Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.