. 24/7 Space News .
ENERGY TECH
Deceleration of runaway electrons paves the way for fusion power
by Staff Writers
Gothenburg, Sweden (SPX) Jun 23, 2017


Although the vacuum chamber in the British fusion reactor JET has a wall made of solid metal, it can melt if it gets hit by a beam of runaway electrons. It is these runaway elementary particles that doctoral students Linnea Hesslow and Ola Embreus have successfully identified and decelerated. Credit Eurofusion

Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions. However, imitating the solar energy process is a difficult task to achieve. Two young plasma physicists at Chalmers University of Technology have now taken us one step closer to a functional fusion reactor. Their model could lead to better methods for decelerating the runaway electrons, which could destroy a future reactor without warning.

It takes high pressure and temperatures of about 150 million degrees to get atoms to combine. As if that was not enough, runaway electrons are wreaking havoc in the fusion reactors that are currently being developed.

In the promising reactor type tokamak, unwanted electric fields could jeopardise the entire process. Electrons with extremely high energy can suddenly accelerate to speeds so high that they destroy the reactor wall.

It is these runaway electrons that doctoral students Linnea Hesslow and Ola Embreus have successfully identified and decelerated. Together with their advisor, Professor Tunde Fulop at the Chalmers Department of Physics, they have been able to show that it is possible to effectively decelerate runaway electrons by injecting so-called heavy ions in the form of gas or pellets. For example, neon or argon can be used as "brakes".

When the electrons collide with the high charge in the nuclei of the ions, they encounter resistance and lose speed. The many collisions make the speed controllable and enable the fusion process to continue. Using mathematical descriptions and plasma simulations, it is possible to predict the electrons' energy - and how it changes under different conditions.

"When we can effectively decelerate runaway electrons, we are one step closer to a functional fusion reactor. Considering there are so few options for solving the world's growing energy needs in a sustainable way, fusion energy is incredibly exciting since it takes its fuel from ordinary seawater," says Linnea Hesslow.

She and her colleagues recently had their article published in the reputed journal Physical Review Letters. The results have also attracted a great deal of attention in the field of research. In a short period of time, 24-year-old Linnea Hesslow and 25-year-old Ola Embreus have given lectures at a number of international conferences, including the prestigious and long-standing Sherwood Fusion Theory Conference in Annapolis, Maryland, USA, where they were the only presenters from Europe.

"The interest in this work is enormous. The knowledge is needed for future, large-scale experiments and provides hope when it comes to solving difficult problems. We expect the work to make a big impact going forward," says Professor Tunde Fulop.

Despite the great progress made in fusion energy research over the past fifty years, there is still no commercial fusion power plant in existence. Right now, all eyes are on the international research collaboration related to the ITER reactor in southern France.

"Many believe it will work, but it's easier to travel to Mars than it is to achieve fusion. You could say that we are trying to harvest stars here on earth, and that can take time. It takes incredibly high temperatures, hotter than the center of the sun, for us to successfully achieve fusion here on earth. That's why I hope research is given the resources needed to solve the energy issue in time," says Linnea Hesslow.

Fusion energy and runaway electrons
Fusion energy occurs when light atomic nuclei are combined using high pressure and extremely high temperatures of about 150 million degrees Celsius. The energy is created the same way as in the sun, and the process can also be called hydrogen power.

Fusion power is a much safer alternative than nuclear power, which is based on the splitting (fission) of heavy atoms. If something goes wrong in a fusion reactor, the entire process stops and it grows cold. Unlike with a nuclear accident, there is no risk of the surrounding environment being affected.

The fuel in a fusion reactor weighs no more than a stamp, and the raw materials come from ordinary seawater.

As yet, fusion reactors have not been able to produce more energy than they are supplied. There is also a problem with so-called runaway electrons. The most common method of preventing this damage is to inject heavy ions, such as argon or neon, which act like brakes due to their large charge. A new model developed by researchers at Chalmers describes how much the electrons are decelerated, paving the way to making these runaway electrons harmless.

Research Report: Effect of partially-screened nuclei on fast-electron dynamics

ENERGY TECH
New model deepens understanding of the dynamics of quark-gluon plasmas
Sao Paulo, Brazil (SPX) Jun 08, 2017
Quark-gluon plasmas are among the subjects that have been most extensively researched by physicists in recent times. Thanks to the largest particle accelerators in operation today - the Large Hadron Collider (LHC) in Europe and the Relativistic Heavy Ion Collider (RHIC) in the United States - it is now possible to reproduce a quark-gluon plasma in the laboratory. This state of matter is believed ... read more

Related Links
Chalmers University of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Return to the blue

NASA Selects Army Surgeon for Astronaut Training

Teachers doubt most students interested in subjects that promote space careers

Plants to feed Earth and beyond

ENERGY TECH
Orbex reveals space rocket factory

Developing Landing Tech for Space

Amtrak to SpaceX Launch, Wifi hack, Spectacular trip, But where's my SatPhone...

SLS Core Stage Production Continues for Rocket's First Flight

ENERGY TECH
Mars rover Opportunity on walkabout near crater rim

No One Under 20 Has Experienced a Day Without NASA at Mars

Mars Orbiter spots rover ascending Mount Sharp

Opportunity Straightens Wheel, Resumes Driving

ENERGY TECH
China's cargo spacecraft completes second docking with space lab

China to launch four more probes before 2021

New broadcasting satellite fails to enter preset orbit

China launches remote-sensing micro-nano satellites

ENERGY TECH
Gravitational wave mission selected, planet-hunting mission moves forward

Boeing Streamlining Defense and Space Unit to boost competitiveness

Trudeau under pressure to reject China bid for satellite firm

Jumpstart goes into alliance with major aerospace and defence group ADS

ENERGY TECH
A new virtual approach to science in space

Universal stabilization

Helium droplets offer new precision to single-molecule laser measurement

Magnetic space tug could target dead satellites

ENERGY TECH
Could a Dedicated Mission to Enceladus Detect Microbial Life There

NASA discovers 10 new Earth-size exoplanets

New branch in family tree of exoplanets discovered

Finding new Earths: PLATO spacecraft to be built

ENERGY TECH
NASA Completes Study of Future 'Ice Giant' Mission Concepts

The curious case of the warped Kuiper Belt

King of the Gods: Jupiter Dated to Be Oldest Planet in the Solar System

New Horizons Team Digs into New Data on Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.