. | . |
Dawn Observing Ceres; 3rd Reaction Wheel Malfunctions by Staff Writers Pasadena CA (JPL) Apr 27, 2017
NASA's Dawn spacecraft is preparing to observe Ceres on April 29 from an "opposition" position, directly between the dwarf planet's mysterious Occator Crater and the sun. This unique geometry may yield new insights about the bright material in the center of the crater. While preparing for this observation, one of Dawn's two remaining reaction wheels stopped functioning on April 23. By electrically changing the speed at which these gyroscope-like devices spin, Dawn controls its orientation in the zero-gravity, frictionless conditions of space. The team discovered the situation during a scheduled communications session on April 24, diagnosed the problem, and returned the spacecraft to its standard flight configuration, still with hydrazine control, on April 25. The failure occurred after Dawn completed its five-hour segment of ion thrusting on April 22 to adjust its orbit, but before the shorter maneuver scheduled for April 23-24. The orbit will still allow Dawn to perform its opposition measurements. The reaction wheel's malfunctioning will not significantly impact the rest of the extended mission at Ceres. Dawn completed its prime mission in June 2016, and is now in an extended mission. It has been studying Ceres for more than two years, and before that, the spacecraft orbited giant asteroid Vesta, sending back valuable data and images. Dawn launched in 2007. The Dawn operations team has been well prepared to deal with the loss of the reaction wheel. The spacecraft is outfitted with four reaction wheels. It experienced failures of one of the wheels in 2010, a year before it entered orbit around Vesta, and another in 2012, as it was completing its exploration of that fascinating world. When a third reaction wheel stopped working this week, the spacecraft correctly responded by entering one of its safe modes and assigning control of its orientation to its hydrazine thrusters. Today, Dawn's elliptical orbit will bring it from an altitude of 18,800 miles (30,300 kilometers) to 17,300 miles (27,900 kilometers) above Ceres.
Pasadena CA (JPL) Apr 20, 2017 As NASA's Dawn spacecraft continues exploring Ceres, evidence mounts that the enigmatic dwarf planet retains a significant amount of water ice. A new study in the journal Nature Geoscience adds to this picture, showing how ice may have shaped the variety of landslides seen on Ceres today. "Images from Dawn show that landslides, many of which are similar to those seen on Earth, are very com ... read more Related Links Dawn at NASA Asteroid and Comet Mission News, Science and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |