. | . |
Dartmouth-led team develops method to predict local climate change by Staff Writers Hanover NH (SPX) Feb 23, 2016
Global climate models are essential for climate prediction and assessing the impacts of climate change across large areas, but a Dartmouth College-led team has developed a new method to project future climate scenarios at the local level. The method can be used in any mountainous or hilly area with a reasonable number of weather stations measuring temperature and precipitation. The findings appear in the Journal of Hydrometeorology. A PDF is available on request. The team includes researchers from Dartmouth, the University of Vermont and Columbia University. Global models can simulate the earth's climate hundreds of years into the future, and have been used to evaluate climate impacts on water, air temperature, human health, extreme precipitation, wildfire, agriculture, snowfall, and other applications. But both global climate models - and global models that have been downscaled to increase the data's spatial resolution, analogous to increasing the number of pixels used in a digital image - aren't accurate at local and regional levels. That makes them insufficient for modeling of potential climate impacts on small watersheds, such as those in the mountainous northeastern United States, which are a critical socioeconomic resource for Vermont, New York, New Hampshire, Maine and southern Quebec. To address this limitation, the researchers developed a method to generate high-resolution climate datasets for assessing local climate change impacts on the Lake Champlain basin in Vermont, including changes in water quantity and quality flowing into Lake Champlain. They did this by finding the relationships between temperature and elevation and between precipitation and elevation, and then using those relationships to create a high-resolution temperature and precipitation dataset from a relatively coarse-resolution dataset and high-resolution elevation data. "Compared to weather station observations, our high-resolution dataset better captures both temperature and precipitation, especially in cases where there is a large error in the coarse-resolution dataset and the elevation adjustment is large," says lead author Jonathan Winter, an assistant professor of geography whose research explores climate prediction and the impacts of climate variability and change on water resources and agriculture. "Improved climate datasets at higher resolutions make assessments of climate variability and climate change impacts both more accurate and more location specific."
Related Links Dartmouth College Climate Science News - Modeling, Mitigation Adaptation
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |