. 24/7 Space News .
STELLAR CHEMISTRY
'DNA' of Twin Stars Helps Reveal Family History of Milky Way
by Staff Writers
Austin TX (SPX) Dec 24, 2019

Hawkins found that the chemical 'DNA,' or spectra, of twin stars born together are identical, as shown here. Hawkins captured these spectra of two stars in a binary pair using the Harlan J. Smith Telescope at McDonald Observatory. (The background image is an artists' concept of a binary star.) Credit: K. Hawkins/UT Austin (data) and NASA/JPL-Caltech/T. Pyle (background)

Twin stars appear to share chemical "DNA" that could help scientists map the history of the Milky Way galaxy, according to new research by astronomer Keith Hawkins of The University of Texas at Austin accepted for publication in The Monthly Notices of the Royal Astronomical Society.

Hawkins knows something about twin similarities and differences, being himself a fraternal twin. His own study of stellar twins "is a kind of a '23 and Me' for stars," he said with a laugh.

Using a telescope at the university's McDonald Observatory, he studied the chemistry of twin stars to see whether they are identical or fraternal twins. Hawkins' work has shown that most twin stars are chemically identical. As a result, the search for chemically identical stars could yield a better understanding of the galaxy's history over time.

Working with a team that includes UT Austin undergraduate and graduate students as well as colleagues from Princeton University, the Carnegie Observatories, and the University of California, Berkeley, Hawkins focused on 25 widely spaced binary stars identified by the Gaia satellite. Each such binary contains two stars that were born together billions of years ago, out of a single collapsing cloud of gas and dust.

Using the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory, Hawkins probed the detailed chemical compositions of all 50 stars in these binary systems to a greater depth than any previous studies. His results demonstrated that stars born together show chemical compositions that are virtually identical - many times more so than same-type stars chosen at random.

These results have implications far beyond just understanding binary stars, Hawkins said. The study serves as a proof-of-concept for the idea of "chemical tagging" - using the chemical compositions of stars spread throughout the galaxy to figure out which stars formed together initially.

Astronomers know that vast numbers of stars are born in giant clouds of gas and dust often referred to as stellar nurseries. During the course of millions or billions of years, though, Hawkins says, these "loose assemblies of stars that form together get dispersed over time."

If the concept of chemical tagging is valid, astronomers can use it to track down chemically identical stars dispersed around the galaxy today. Armed with this chemical map, they can then rewind the stars' trajectories back to their beginnings in a single giant star-forming cloud. In other words, they can "retrace the assembly history of the galaxy," Hawkins said.

A deeper understanding of our Milky Way's evolution will provide an in-depth case study toward astronomers' quest to understand all galaxies - the building blocks of the universe.

Research Report: "Identical or Fraternal Twins?: The Chemical Homogeneity of Wide Binaries from Gaia DR2"


Related Links
McDonald Observatory At The University of Texas
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Distant Milky Way-like galaxies reveal star formation history of the universe
Charlottesville VA (SPX) Dec 18, 2019
Look at this new radio image covered with dots, each of which is a distant galaxy! The brightest spots are galaxies that are powered by supermassive black holes and shine bright in radio light. But what makes this image special are the numerous faint dots filling the sky. These are distant galaxies like our own that have never been observed in radio light before. To learn about the star-formation history of the universe, we need to look back in time. Galaxies throughout the universe have been form ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Boeing spacecraft lands in New Mexico after mission cut short

Facing industrial decline, Wales dreams of Silicon Valley

Beleaguered Boeing's Starliner returns early from failed mission

From take off to landing, NASA and Boeing work together to launch Commercial Crew

STELLAR CHEMISTRY
Europe marks 40th anniversary of first Ariane rocket launch

Aerojet Rocketdyne selected to provide solid rocket motor for Hypersonic Conventional Strike Weapon

Arianespace's last mission of the year a complete success

PR GMV's avionics system will be integrated into the MIURA 1 of PLD Space

STELLAR CHEMISTRY
Developing a technique to study past Martian climate

Mars Express tracks the phases of Phobos

Mars 2020 Rover Completes Its First Drive

Lockheed Martin delivers Mars 2020 rover aeroshell to launch site

STELLAR CHEMISTRY
China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

STELLAR CHEMISTRY
Kacific's first satellite in orbit

Iridium Continues GMDSS Readiness with Announcement of Launch Partners

Nilesat-301 satellite to be built by Thales Alenia Space

SpaceChain sends blockchain tech to ISS

STELLAR CHEMISTRY
Capricorn Space and Infostellar cooperate to enable On Demand ground segment services

Shedding light in the dark: radar satellites lead the way

Observing time awarded to prepare for data-rich era in astronomy

Tiny quantum sensors watch materials transform under pressure

STELLAR CHEMISTRY
Researchers spy on planets as fluffy as cotton candy

NYU Abu Dhabi researcher discovers exoplanets can be made less habitable by stars' flares

Breathable atmospheres may be more common in the universe than we first thought

Europe's exoplanet hunter blasts off from Earth

STELLAR CHEMISTRY
NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.