. 24/7 Space News .
AEROSPACE
DLR tests flexible and actively controlled wing designs
by Staff Writers
Berlin, Germany (SPX) Jul 08, 2019

DLR researchers are testing a novel aeroelastic wing in Gottingen. It can bend and twist more than current wings and can be up to 20 percent lighter.

Future aircraft need to be lighter and hence more fuel-efficient. For this reason, the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) in Gottingen has now tested two wing designs as part of an EU project. These types of wings have hitherto been impossible to manufacture.

Alongside more fuel-efficient engines and higher-aspect-ratio wings, weight reduction is regarded as the most important way to reduce fuel consumption in the air transport sector. In the case of aircraft wings, the possibilities for reducing weight while using conventional manufacturing techniques have been almost fully exploited.

Since aircraft wings have to withstand high loads, they are built to be particularly mechanically stable. In the past, they were made of the lightweight metal aluminium; today, they are increasingly being manufactured using carbon-fibre reinforced composites.

The EU FLEXOP project, in which research institutions from six nations have joined forces, has set itself the goal of investigating new possibilities in wing design. The researchers designed two different variants that promise weight reduction and built them together with a standard wing to use for comparison purposes.

In order to investigate the effectiveness of the new wing designs, they have now been tested in what are referred to as ground vibration tests at the DLR Institute of Aeroelasticity in Gottingen.

The standard wing model was made using carbon-fibre reinforced composites and is based on the wing of a conventional commercial aircraft. The first innovative wing design is the 'flutter wing', designed by the Technical University of Munich.

This wing is made of glass-fibre reinforced composites and is deliberately designed in such a way that it can enter the dangerous state of 'fluttering'. During aerodynamic flutter, in a behaviour similar to a flag flying in the wind, the oscillations caused by the airflow over the wing become stronger and stronger until a mechanical failure occurs. A

n innovative flight control system developed and designed by the DLR Institute of System Dynamics and Control in Oberpfaffenhofen is to prevent such a critical condition from occurring. The outermost flaps on the trailing edge of the wing are controlled in such a way that they act as dampers. This allows the wing to be much lighter and to have a higher aspect ratio.

"Active control significantly increases the possibilities for a much lighter design," says Gertjan Looye, coordinator of DLR's involvement in the project.

A second flight control system is being developed by the Hungarian Academy of Sciences Institute of Computer Science and Control (MTA SZTAKI). Project Manager Balint Vanek of MTA SZTAKI adds: "Such a wing could make it possible to transport 20 percent more freight or use seven percent less fuel."

Twenty percent lighter
The other wing design under test, the 'aeroelastic wing', was developed by the DLR Institute of Aeroelasticity together with the University of Delft. Although it is also constructed using carbon-fibre reinforced composites, it has special properties. "Under load, the new wing not only bends, it also twists much more extensively than today's wings," says Yves Govers, DLR's Test Manager in Gottingen.

As a result, the aeroelastic wing is able to avoid being subjected to the heaviest loads in flight and is as stable as the standard wing - although it is 20 percent lighter. This is made possible by a specially optimised and unconventional layer structure in the materials from which it is manufactured.

Ground vibration tests are an important part of the test programme for aircraft prototypes. For each new aircraft type, its flutter safety must be proven. The DLR Institute of Aeroelasticity is a leader in the field of ground vibration tests and has already measured the vibration characteristics of prototypes of large commercial aircraft such as the Airbus A380, the Airbus A350 and, most recently, the Beluga XL.

In the second half of 2019, the wing models will also be flight tested in Oberpfaffenhofen.


Related Links
DLR Institute of Aeroelasticity
Aerospace News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


AEROSPACE
Erdogan says US refusal to deliver F-35 jets would be 'robbery'
Ankara (AFP) July 4, 2019
President Recep Tayyip Erdogan said it would be "robbery" for the United States to deny Turkey the F-35 fighter jets it has bought, according to comments published on Thursday. Turkey-US ties are under serious strain over Ankara's purchase of the Russian S-400 air defence system, which is due for delivery in the coming days. In response, Washington has threatened to cancel Turkey's order of 116 F-35 fighter jets and kick it off the training and production programme, as well as wider economic san ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
Virgin Galactic seeks space tourism boost with market launch

Russian Federatsiya spacecraft crew could be killed in case of water landing

Keeping NASA's Oldest Explorers Going

Branson's Virgin Galactic to go public: report

AEROSPACE
Pioneer satellites launched

Scientists make breakthrough that enables rockets to orbit longer

Ball Aerospace begins on-orbit testing of green fuel

China to launch constellation with 72 satellites for Internet of Things

AEROSPACE
Sustaining Life on Long-Term Crewed Missions Will Require Planetary Resources

InSight Uncovers the 'Mole' on Mars

Mars 2020 Rover Gets a Super Instrument

Methane vanishing on Mars

AEROSPACE
From Moon to Mars, Chinese space engineers rise to new challenges

China plans to deploy almost 200 AU-controlled satellites into orbit

Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

AEROSPACE
To be a rising star in the space economy, Australia should also look to the East

Israeli space tech firm hiSky expands to the UK

All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Newtec collaborates with QinetiQ, marking move into space sector

AEROSPACE
RUBI - Full steam ahead for the ISS

Would your mobile phone be powerful enough to get you to the moon?

ThinKom completes technology validation on Telesat low-earth orbit satellite

ATLAS expands on-orbit customer base, bolsters global ground network

AEROSPACE
Discovering Exoplanets with Gravitational Waves

Planet Seeding and Panspermia

ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

NASA's TESS Mission Finds Its Smallest Planet Yet

AEROSPACE
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.