. 24/7 Space News .
SPACE MEDICINE
Cyborg cardiac patch may treat the diseased heart
by Staff Writers
Tel Aviv, Israel (SPX) Mar 22, 2016


A remotely regulated living bionic heart is pictured. The engineered tissue is comprised of living cardiac cells, polymers, and a complex nanoelectronic system. This integrated electronic system provides enhanced capabilities, such as online sensing of heart contraction, and pacing when needed. In addition, the electronics can control the release of growth factors and drugs, for stem cell recruitment and to decrease inflammation after transplantation. Image courtesy Tel Aviv University. For a larger version of this image please go here.

More than 25% of the people on the national US waiting list for a heart will die before receiving one. Despite this discouraging figure, heart transplants are still on the rise. There just hasn't been an alternative. Until now.

The "cyborg heart patch," a new engineering innovation from Tel Aviv University, may single-handedly change the field of cardiac research. The bionic heart patch combines organic and engineered parts. In fact, its capabilities surpass those of human tissue alone. The patch contracts and expands like human heart tissue but regulates itself like a machine.

The invention is the brainchild of Prof. Tal Dvir and PhD student Ron Feiner of TAU's Department of Biotechnology, Department of Materials Science and Engineering, and Center for Nanoscience and Nanotechnology. Their study was published in the journal Nature Materials.

Science fiction becomes science fact
"With this heart patch, we have integrated electronics and living tissue," Dr. Dvir said. "It's very science fiction, but it's already here, and we expect it to move cardiac research forward in a big way.

"Until now, we could only engineer organic cardiac tissue, with mixed results. Now we have produced viable bionic tissue, which ensures that the heart tissue will function properly."

Prof. Dvir's Tissue Engineering and Regenerative Medicine Lab at TAU has been at the forefront of cardiac research for the last five years, harnessing sophisticated nanotechnological tools to develop functional substitutes for tissue permanently damaged by heart attacks and cardiac disease.

The new cyborg cardiac patch not only replaces organic tissue but also ensures its sound functioning through remote monitoring.

"We first ensured that the cells would contract in the patch, which explains the need for organic material," said Dr. Dvir. "But, just as importantly, we needed to verify what was happening in the patch and regulate its function. We also wanted to be able to release drugs from the patch directly onto the heart to improve its integration with the host body."

For the new bionic patch, Dr. Dvir and his team engineered thick bionic tissue suitable for transplantation. The engineered tissue features electronics that sense tissue function and accordingly provide electrical stimulation.

In addition, electroactive polymers are integrated with the electronics. Upon activation, these polymers are able to release medication, such as growth factors or small molecules on demand.

Cardiac therapy in real time
"Imagine that a patient is just sitting at home, not feeling well," Dr.

Dvir said. "His physician will be able to log onto his computer and this patient's file - in real time. He can view data sent remotely from sensors embedded in the engineered tissue and assess exactly how his patient is doing. He can intervene to properly pace the heart and activate drugs to regenerate tissue from afar.

"The longer-term goal is for the cardiac patch to be able to regulate its own welfare. In other words, if it senses inflammation, it will release an anti-inflammatory drug. If it senses a lack of oxygen, it will release molecules that recruit blood-vessel-forming cells to the heart."

Dr. Dvir is currently examining how his proof of concept could apply to the brain and spinal cord to treat neurological conditions.

"This is a breakthrough, to be sure," Dr. Dvir said. "But I would not suggest binging on cheeseburgers or quitting sports just yet. The practical realization of the technology may take some time. Meanwhile, a healthy lifestyle is still the best way to keep your heart healthy."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tel Aviv University
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
NASA Glenn technology pumps hope into broken hearts
Cleveland OH (SPX) Mar 13, 2016
Dr. Mark Rodefeld knows the hearts of children. As a pediatric heart surgeon at Indiana University, he's spent decades fixing them. One particular heart problem has consumed much of his research and he has reached out to NASA Glenn Research Center to help him solve it. "About 1,500 children are born every year with a missing ventricle," says Rodefeld. "The numbers sound low, but it's actually th ... read more


SPACE MEDICINE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

SPACE MEDICINE
ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

SPACE MEDICINE
NASA Selects American Small Business, Research Institution Projects for Continued Development

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

SPACE MEDICINE
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

SPACE MEDICINE
Grandpa astronaut to break Scott Kelly's space record

Three new members join crew of International Space Station

Three new crew, including US grandpa, join space station

Space station astronauts ham it up to inspire student scientists

SPACE MEDICINE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

SPACE MEDICINE
Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

SPACE MEDICINE
International research team achieves controlled movement of skyrmions

Light helps the transistor laser switch faster

INRS takes giant step forward in generating optical qubits

Wrangler Supercomputer speeds through big data









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.