. | . |
Cyborg cardiac patch may treat the diseased heart by Staff Writers Tel Aviv, Israel (SPX) Mar 22, 2016
More than 25% of the people on the national US waiting list for a heart will die before receiving one. Despite this discouraging figure, heart transplants are still on the rise. There just hasn't been an alternative. Until now. The "cyborg heart patch," a new engineering innovation from Tel Aviv University, may single-handedly change the field of cardiac research. The bionic heart patch combines organic and engineered parts. In fact, its capabilities surpass those of human tissue alone. The patch contracts and expands like human heart tissue but regulates itself like a machine. The invention is the brainchild of Prof. Tal Dvir and PhD student Ron Feiner of TAU's Department of Biotechnology, Department of Materials Science and Engineering, and Center for Nanoscience and Nanotechnology. Their study was published in the journal Nature Materials.
Science fiction becomes science fact "Until now, we could only engineer organic cardiac tissue, with mixed results. Now we have produced viable bionic tissue, which ensures that the heart tissue will function properly." Prof. Dvir's Tissue Engineering and Regenerative Medicine Lab at TAU has been at the forefront of cardiac research for the last five years, harnessing sophisticated nanotechnological tools to develop functional substitutes for tissue permanently damaged by heart attacks and cardiac disease. The new cyborg cardiac patch not only replaces organic tissue but also ensures its sound functioning through remote monitoring. "We first ensured that the cells would contract in the patch, which explains the need for organic material," said Dr. Dvir. "But, just as importantly, we needed to verify what was happening in the patch and regulate its function. We also wanted to be able to release drugs from the patch directly onto the heart to improve its integration with the host body." For the new bionic patch, Dr. Dvir and his team engineered thick bionic tissue suitable for transplantation. The engineered tissue features electronics that sense tissue function and accordingly provide electrical stimulation. In addition, electroactive polymers are integrated with the electronics. Upon activation, these polymers are able to release medication, such as growth factors or small molecules on demand.
Cardiac therapy in real time Dvir said. "His physician will be able to log onto his computer and this patient's file - in real time. He can view data sent remotely from sensors embedded in the engineered tissue and assess exactly how his patient is doing. He can intervene to properly pace the heart and activate drugs to regenerate tissue from afar. "The longer-term goal is for the cardiac patch to be able to regulate its own welfare. In other words, if it senses inflammation, it will release an anti-inflammatory drug. If it senses a lack of oxygen, it will release molecules that recruit blood-vessel-forming cells to the heart." Dr. Dvir is currently examining how his proof of concept could apply to the brain and spinal cord to treat neurological conditions. "This is a breakthrough, to be sure," Dr. Dvir said. "But I would not suggest binging on cheeseburgers or quitting sports just yet. The practical realization of the technology may take some time. Meanwhile, a healthy lifestyle is still the best way to keep your heart healthy."
Related Links Tel Aviv University Space Medicine Technology and Systems
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |