![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Hannover, Germany (SPX) Feb 01, 2018
A team of researchers from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) in Hannover and from the Institute for Gravitational Physics at Leibniz Universitat Hannover has developed an advanced squeezed-light source for the gravitational-wave detector Virgo near Pisa. Now, the Hannover scientists have delivered the setup, installed it, and handed it over to their Virgo colleagues. Beginning in autumn 2018 Virgo will use the squeezed-light source to listen to Einstein's gravitational waves together with the worldwide network of detectors with higher sensitivity than ever before. "The German-British gravitational-wave detector GEO600 near Hannover has been routinely using a squeezed-light source since 2010. It has increased the part of the universe that GEO600 listens to by a factor of up to four," says Prof. Karsten Danzmann, director at the AEI Hannover and director of the Institute for Gravitational Physics at Leibniz Universitat Hannover. "The development and perfection of the cutting-edge technology is another successful chapter in the history of GEO600 as think thank of gravitational-wave research."
Preparations for the Next Stage of Gravitational-Wave Astronomy O3 is expected to usher in full-scale gravitational-wave astronomy through a large number of further gravitational-wave detections from merging binary black holes and additional signals from merging neutron star pairs. For this purpose, Virgo has now received a valuable addition from Hannover: A setup called a squeezed-light source is expected to significantly increase Virgo's sensitivity from the beginning of O3. The custom-made device is a permanent loan of the AEI to Virgo and is worth about 400,000 Euros.
Fingerprints of Quantum Mechanics "This background noise is present even in complete darkness and can never be entirely removed. But we can change its properties - we call that squeezing - such that it interferes less with the gravitational-wave measurement," say Dr. Henning Vahlbruch and Dr. Moritz Mehmet from AEI Hannover. They have built and the squeezed-light source and installed it at the Virgo detector. "In a sense, our device creates a kind of darkness that is better than nature usually allows for. With this improved background noise we can increase the detectors' sensitivity."
Technology for the Future of Gravitational-Wave Astronomy
![]() ![]() Deep Learning Pioneered for Real-Time Gravitational Wave Discovery Urbana IL (SPX) Jan 29, 2018 Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. This new approach will enable astronomers to study gravitational waves using minimal computational resources, reducing time to discovery and increasing the scientific reach of gravitational wave astrophysics. This innovative research was recently p ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |