Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Crystal-clear method for distinguishing between glass and fluids
by Staff Writers
Munich, Germany (SPX) May 29, 2013


Chemist Dr. Miriam Siebenburger has contributed to develop a new method to distinguish between a glassy and liquid state. Credit: HZB.

Many solids are produced from melting. Depending on how quickly they cool off, invariably, internal tensile stresses begin to build up. One example are Prince Rupert's Drops, or Dutch tears: you can hit their thick end with a hammer without breaking them while a slight pressure applied to their thin end is enough to shatter the entire tear.

The properties of safety or even gorilla glass are determined to a large extent by their internal tensile stresses. However, until now, our understanding of the unique characteristics exhibited by the condition of the glass as compared with a tough molten mass was spotty at best. Now, a collaboration of several German and Cretian research teams has offered a surprisingly simple model to explain the difference between glass and molten materials.

The HZB's contribution was by chemist Dr. Miriam Siebenburger of the Institute for Soft Matter and Functional Materials. Siebenburger came up with a rather elegant model system consisting of spherical plastic particles in aqueous solution (a mixture known as a suspension). Due to the tiny size of the particles - each having a diameter of around 150 nanometer - they float in the aqueous solution but never sediment.

The nanoparticles are covered by a thermosensitive "shell", whose thickness can be adjusted by varying the temperature, causing them to shrink and grow reversibly in a continuous manner.

This allows the chemist to convert her samples from a densely packaged "glass" into a less dense, more fluid state, in other words melt them down. Through a series of rheological measurements, Miriam Siebenburger was able to determine how quickly the internal tensions in her samples could relax at different particle packing densities.

For this purpose, she placed the samples in-between two parallel plates, which she counter-rotated relative to each other to produce shearing forces within the sample. After reaching a stationary state of shearing stress at a constant shearing rate, the rotating plates were actively stopped.

Next, the force it takes to stop the plates to zero shear rate, and which is a gauge for internal tensions, was measured. In the process, the critical difference between the fluid and glassy state became apparent:

Whereas the fluid tensions dissipated without a trace, a proportion of the tensions was maintained in the glassy state. The results are fitting nicely into the theoretical model developed by a group of Constance physicists who calculated the behavior of hard spheres at different packing densities.

What's more, measurements of the internal tensile stresses and dynamics of larger-sized particles (in the ?m range) by Cretian and Dusseldorf researchers and the molecular dynamics simulation of hard spheres by a team of researchers from Cologne and Mainz exhibit similar patterns of behavior.

The scientists are convinced that their findings apply to all types of glass that are created as a result of their high packing densities including metallic glass, which is mainly used for high-tech applications. The researchers' findings have now been published in the renowned scientific journal, Physical Review Letters.

DOI: 10.1103/PhysRevLett.110.215701 M. Ballauff, J. M. Brader, S. U. Egelhaaf, M. Fuchs, J. Horbach, N. Koumakis, M. Kruger, M. Laurati, K. J. Mutch, G. Petekidis, M. Siebenburger, Th. Voigtmann, and J. Zausch, "Residual Stresses in Glasses", Phys. Rev. Lett. 110, 215701 (2013).

.


Related Links
Helmholtz Association of German Research Centres
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Magnetic fingerprints of superfluid helium-3
Bundesanstalt, Germany (SPX) May 24, 2013
With their SQUIDs, low-temperature specialists of the Physikalisch-Technische Bundesanstalt (PTB) have made it possible for the magnetic moments of atoms of the rare isotope 3He (helium-3) to be measured with extreme sensitivity. With the aid of these sensors, highly sensitive nuclear resonance spectrometers were developed which have now provided deep insights into the state of matter at extreme ... read more


TECH SPACE
Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

Bright Explosion on the Moon

TECH SPACE
Opportunity Departing 'Cape York'

Bacterium from Canadian High Arctic and life on Mars

Curiosity Drills Second Rock Target

Mars Rover Opportunity Examines Clay Clues in Rock

TECH SPACE
Northrop Grumman-Built Modular Space Vehicle Nears Completion of Manufacturing Phase

French government posts space counsellor in Bangalore

3D Printing: Food in Space

Chinese group bids for Club Med holidays: firms

TECH SPACE
Shopping for Shenzhou

Waiting for Shenzhou 10

China launches communications satellite

On Course for Shenzhou 10

TECH SPACE
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

TECH SPACE
First Light Angara Rocket Ready for Launch

Russia to launch 12 Proton-M rockets in 2013

Russian Spacecraft Manufacturer to Make Four Launches in 2014

Electric Propulsion

TECH SPACE
Big Weather on Hot Jupiters

Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

TECH SPACE
Helicopter-light-beams - a new tool for quantum optics

Just how secure is quantum cryptography

One Year Anniversary of KOMPSAT-3 Launch

Crystal-clear method for distinguishing between glass and fluids




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement